
AN INTRODUCTION TO MINIMAL SURFACES

ZHENGJUN LIANG

Abstract. The following note provides an introduction to the theory of minimal surfaces.
We motivate relevant concepts using graph surfaces in R3, and then generalize them to
Riemannian manifolds. We next investigate the first and second variations of the volume
functional, and eventually present several implications of the formulas we obtained. Most
of the materials are drawn from [2] and [5], but many details are reconstructed.
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1. Motivation of the Theory

For the beginning of the theory, let us focus on the specific setting of hypersurfaces in R3.
A surface M in R3 is minimal if for every p in M , there is a neighborhood around p bounded
by a simple closed curve such that the surface area of this neighborhood is the smallest
among all surfaces bounded by this curve. Heuristically speaking, a minimal surface is a
surface that locally minimizes surface area.

We now perform some computations to give a quantitative insight into minimal surfaces.
Suppose u : Ω Ñ R is a C2 function over some domain Ω Ă R2, and we consider the graph
of the function u given by

(1.1) Graphu “ tpx, y, upx, yqq : px, yq P Ωu

Then the area of the graph is given by

AreapGraphuq “

ż

Ω

|p1, 0, uxq ˆ p0, 1, uyq| dA

“

ż

Ω

b

1 ` u2
x ` u2

y dA

“

ż

Ω

a

1 ` |∇u|2 dA

(1.2)

1
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and we note that the upward pointing normal is given by

(1.3) N “
p´ux,´uy, 1q
a

1 ` |∇u|2

Now, we consider a one-parameter family of graphs u ` tη. Here η|BΩ “ 0 to ensure that
u|BΩ “ u ` tη|BΩ. Then

(1.4) AreapGraphu`tηq “

ż

Ω

a

1 ` |∇u ` t∇η|2 dA

Direct computation gives

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

AreapGraphu`tηq “

ż

Ω

x∇u,∇ηy
a

1 ` |∇u|2
dA

“ ´

ż

Ω

η div

ˆ

∇u
a

1 ` |∇u|2

˙

dA

(1.5)

where the second equality above follows from integration by parts. Therefore, the graph
of u is a critical point of the area functional if and only if u satisfies the divergence form
minimal surface equation (MSE)

(1.6) div

ˆ

∇u
a

1 ` |∇u|2

˙

“ 0

Expanding the left-hand side we also get

(1.7) 0 “ p1 ` u2
yquxx ` p1 ` u2

xquyy ´ 2uxuyuxy

Remark 1.8. When |∇u| is bounded, MSE is a uniformly elliptic equation, so we can use
some classical theory to study its properties.

Now, we need to show that solutions to (MSE) indeed minimize area.

Lemma 1.9. If u : Ω Ñ R satisfies the minimal surface equation and Σ Ă Ω ˆ R is any
other surface with BΣ “ BpGraphuq, then

AreapGraphuq ď AreapΣq

Proof. Let N be the normal vector to Graphu as in (3.1), and we may extend the domain of
N to Ω ˆ R by setting Npx, y, zq “ Npx, yq. By the fact that N is constant with respect to
z-variable and (MSE),

divR3pNq “ div

ˆ

´∇u
a

1 ` |∇u|2

˙

“ 0

Note that the divergence theorem gives us
ż

Graphu

N ¨ NGraphu ´

ż

Σ

N ¨ NΣ “

ż

Vol btw Ω and Σ

divR3pNq “ 0

Then

AreapGraphuq “

ż

Graphu

N ¨ NGraphu “

ż

Σ

N ¨ NΣ ď AreapΣq

where the last inequality is because N ¨ NΣ ď 1. □

At this point we have seen that solutions to (MSE) give rise to minimal surfaces.
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2. Geometry of Submanifolds

In this section, we review some important concepts in Riemannian geometry so that we
can generalize concepts related to minimal surfaces to minimal submanifolds, which we shall
define in the next section. Let Σ Ă M be a submanifold. For every vector field X on Σ,
we use X

K

and XK to denote the tangential and normal components of X, respectively. We
then define the connection on Σ by

p∇ΣqXY “ p∇XY q

K

and the second second fundamental form on Σ by

ApX, Y q “ p∇XY q
K

We note that the second fundamental form is a symmetric bilinear form, since the Lie bracket
of two vector fields tangential to Σ is again tangential to Σ.

Let x P Σ, and tBiui an orthonormal frame near x. We define the norm squared of the
second fundamental form by

|A|
2

“

k
ÿ

i,j“1

|ApBi, Bjq|
2

and we also use the notation

Aij “ |ApBi, Bjq|

The mean curvature vector H at x is given by

H “

k
ÿ

i“1

ApBi, Biq

and the divergence of X at x P Σ is given by

divΣpXq “

n
ÿ

i“1

x∇BiX, Biy

It could be checked that the definition of mean curvature is independent of the orthonormal
frame chosen. We note that

divΣpY K
q “

ÿ

i

xBi,∇BiY
K

y “ ´
ÿ

i

xY K,∇BiBiy “ ´xY K, Hy

so the definition of divergence is also independent of the orthonormal frame chosen.
Eventually, given a smooth function f on Σ, we define the gradient ∇Σf at x P Σ by

x∇Σf,Xyx “ dfxpXq

for every vector field X on Σ. Then the Laplace operator ∆Σ on Σ is given by

∆Σf “ divΣp∇Σfq

As in Eulidean space Rn, we say that f is harmonic at x if

∆Σf “ 0

at x.
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3. First and Second Variations

Let F : Σ ˆ p´ε, εq Ñ Mn be a variation of Σ with compact support and fixed boundary.
That is, F “ Id outside of a compact set, F px, 0q “ x for all x P Σ, and F px, tq “ x for all
x P BΣ. The vector field Ft restricted to Σ is often called the variational vector field.

Now we want to compute the first variation of area for this one-parameter family of
surfaces. Let txiui be local coordinates on Σ, and we denote by Bi the local frame associated
with txiui. Since F p¨, tq is diffeomorphic onto its image for every t P p´ε, εq, we may
pushforward the frame to the image F pΣ, tq and denote it by Fi. Then the metric tensor is
given by

gij “ xFi, Fjy

Note that

VolpF pΣ, tqq “

ż

Σ

b

detpgijptqqij “

ż

Σ

a

detpgijptqqij
a

detpgijp0qqij

and the last integrand function above, which we denote by V ptq, is independent of the choice
of the coordinate system. This is because changing coordinates will give a Jacobian term
of the transition function, and since this term will show up on both the numerator and the
denominator, they will cancel with each other. Then for every x P Σ, we may choose normal
coordinates around x such that gijpx, 0q “ δij, and thus

9VolpF pΣ, 0qq “

ż

Σ

9V px, 0q

Since we have chosen normal coordinates, we have

9V px, 0q “
1

2

d

dt
pdetpgijptqqijq

ˇ

ˇ

ˇ

ˇ

t“0

“
1

2
Trp 9gijpx, 0qq

“

n
ÿ

i“1

xpFiqt, Fiy

ˇ

ˇ

ˇ

ˇ

t“0

“

n
ÿ

i“1

x∇Fi
Ft, Fiy

ˇ

ˇ

ˇ

ˇ

t“0

“ divΣpFtq

ˇ

ˇ

ˇ

ˇ

t“0

We can also relate the above formula to mean curvature of Σ in the following way. If we
split Ft “ F

K

t ` FK
t , then direct computation gives

9V px, 0q “ p´xFt, Hy ` divΣpF

K

t qq

ˇ

ˇ

ˇ

ˇ

t“0

Integrating 9V px, 0q, we have

(3.1) 9VolpF pΣ, 0qq “

ˆ

´

ż

Σ

xFt, Hy

˙ˇ

ˇ

ˇ

ˇ

t“0

where we used the divergence theorem to see that

(3.2)

ˆ
ż

Σ

divΣpF

K

t q

˙
ˇ

ˇ

ˇ

ˇ

t“0

“ 0

We now summarize our observations in the following proposition:

Proposition 3.3. Suppose Σ is a minimal surface and F px, tq a variation as above. Then

(1) divΣpFtq|t“0 “ 0
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(2) Since such F is arbitrary, we must have H vanish identically on Σ.

In fact, we observe from (3.1) that Σ is a critical point of the volume functional if and
only if the mean curvature H vanishes identically on Σ. This motivates us to give one of the
equivalent rigorous definitions of minimal submanifolds.

Definition 3.4 (Minimal Submanifolds). An immersed submanifold Σk Ă Mn is said to be
minimal if the mean curvature H vanishes identically.

Remark 3.5. It can be shown that this definition of minimal submanifolds coincides with the
definition we gave at the beginning of the article in the case of minimal surfaces in R3.

Following our computations of the first variation, we introduce some interesting conse-
quences.

Lemma 3.6 (Harmonic Coordinates). Coordinate functions of a minimal surface Σ are
harmonic.

Proof. We let xi denote the coordinate functions of Σ. Note that

∇Σxi “ ∇

K

xi “ B

K

i

So we have

∆Σxi “ divΣp∇Σxiq “ divΣpBi ´ B
K
i q

“ ´divΣpB
K
i q “ xH, B

K
i y “ 0

where the last equality is because Σ is minimal. □

Corollary 3.7. Given any coordinate function u on Σ, u must have its maximum and
minimum on the boundary of Σ. Moreover, if Σ is minimal, then Σ Ă ConvpBΣq. Here Σ is
regarded to be embedded in Rn for some n.

Proof. The first statement just follows from maximum principle. For the second part, sup-
pose on the contrary that there is a point x that doesn’t lie in ConvpBΣq. Then there is
a hyperplane containing x that doesn’t intersect with ConvpBΣq. To see this, we note that
BΣ is compact, and thus ConvpBΣq is closed. Then we can choose a plane orthogonal to the
projection of x onto ConvpBΣq.

We note that h : Σ Ñ R defined by mapping y P Σ to its distance to the hyperplane can
be realized as a coordinate function, and h attains its minimum 0 at x. However, x is not
on the boundary BΣ and we arrive at a contradiction. □

In 1968, Jim Simons gave a fundamental variation formula for minimal surfaces. We
consider a map F : Σ ˆ p´ε, εq Ñ Mn`1 with the following properties:

(1) Σ is minimal and has trivial normal bundle.
(2) F p¨, 0q is the identity map.
(3) Ft has compact support.
(4) F

K

t “ 0.

The existence of such an F is guaranteed by the existence and uniqueness of ODE solutions.
We shall derive the formula

(3.8) :V p0q “ ´

ż

Σ

xFt, LFty



6 ZHENGJUN LIANG

where if we identify a normal vector field X “ fN for some η,

Lη “ ∆Σf ` |A|
2f ` RicMpNqf

Here RicM is the Ricci curvature on M as seen in [3]. As before, we let xi be local coordinates
on Σ and write

gijptq “ gpFi, Fjq, V ptq :“

a

detpgijptqqij
a

detpgijp0qqij

Then direct computation yields

9V “
1

2
V ¨ Trpg´1 9gq

and also

(3.9) :V p0q “
1

2
9V ¨ Trpg´1 9gq `

1

2
V ¨ Trp 9g´1 9gq `

1

2
V ¨ Trpg´1:gq

To better evaluate :V p0q at a specific point, we fix a point x and choose a normal local
coordinate around x such that gijpx, 0q “ δij. Also we note that g´1g “ Id gives us

9g´1 “ g´1 9gg´1

So (3.9) becomes

:V p0q “
1

2
Trp 9gq

2
`

1

2
Trp:gq “

1

2
detp 9gq

2
`

1

2
Trp:gq

where the last inequality utilizes TrpM2q “ detpMq2 for symmetric matrices, which follows
from the spectral theorem. Now we need a lemma.

Lemma 3.10. At the point x, we get

(3.11) detp 9gp0qq
2

“ 4|xAp¨, ¨q, Fty|
2

(3.12) Trp:gq “ 2|xAp¨, ¨q, Fty|
2

` 2|∇KFt|
2

´ 2RicMpFtq ` 2divΣpFttq

Proof. (1) Since gij “ xFi, Fjy, we have

9gij “ xFxi,t, Fxj
y ` xFxi

, Fxj ,ty

Here the notation convention is that

Fxi,t “ ∇FtFxi
“ ∇FtFi

Since Ft is normal to Σ, the above equation equals to

´xFt,∇Fi
Fjy ´ xFt,∇Fj

Fiy “ ´xFt,∇K
Fi
Fjy ´ xFt,∇K

Fj
Fiy “ ´2xFt, ApFi, Fjqy

When t “ 0, we have

9gijp0q “ ´2xFt, ApFi, Fjqy

Since pFiqi at t “ 0 give an orthonormal basis on TΣ at x, we have the desired result.
(2) Note that

Trp:gp0qq “
ÿ

i

2xFxt,t, Fxi,ty ` 2xFxi,tt, Fxi
y

Each individual term in the first part is

xFxt,t, Fxi,ty “ |∇Fi
Ft|

2
“ |∇ΣFt|

2
“ |∇K

ΣFt|
2

` |∇

K

ΣFt|
2

“ |∇K
ΣFt|

2
` |xA,Fty|

2
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and each individual term each the second part is

x∇Ft∇FtFi, Fiy “ x∇Ft∇Fi
Ft, Fiy “ xRpFi, FtqFt, Fiy ` x∇Fi

∇FtFt, Fiy

So summing in i gives us the desired result.
□

We are now ready to prove the variation formula. Note that Ft “ fN for some smooth
function f on Σ, and N is the normal vector field on Σ. For convenience, we use T to denote
Ft. Since tFiui form an orthonormal frame near x, we have

divΣpFttq “
ÿ

i

x∇Fi
∇TT, Fiy “

ÿ

i

x∇Fi
pf ¨ NpfqqN,Fiy

“
ÿ

i

xpf ¨ Npfqq∇Fi
N,Fiy ` xFipf ¨ Npfqq ¨ N,Fiy

“ pf ¨ Npfqq
ÿ

i

x∇Fi
N,Fiy

“ pf ¨ NpfqqH

The minimality of Σ ensures that H must vanish identically on Σ, so we actually have
divΣpFttq “ 0, and

:V p0q “ ´

ż

Σ

|xAp¨, ¨q, Fty|
2

´ |∇K
ΣFt|

2
` RicMpFtq “ ´

ż

Σ

xFt, LFty

as desired.

4. Examples of Minimal Submanifolds

In this section, we will provide some examples of minimal Submanifolds. We shall focus
on 1 and 2 dimensional manifolds.

Example 4.1 (Geodesics). In 1 dimension, the definition of minimal submanifolds exactly
give us geodesics.

Example 4.2 (The Helicoid). The helicoid is given as the set x3 “ tan´1px2

x1
q. Alternatively

it is given in parametric form by

px1, x2, x3q “ pt cos s, t sin s, sq t, s P R

It was discovered by Meusnier (a student of Monge) in 1776.

Example 4.3 (The Catenoid). The catenoid is the only nonflat minimal surface of revolu-
tion. It is given as the set

tpx1, x2, x3q : x
2
1 ` x2

2 “ cosh2
px3qu
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It was disovered by Euler in 1744 and shown to be minimal by Meusnier (a student of Monge)
in 1776.

Example 4.4 (Skew Quadrilateral). A skew quadrilateral is a four-sided quadrilateral not
contained in a plane. The problem of finding the minimum bounding surface of a skew
quadrilateral was solved by Schwarz in terms of Abelian integrals and has the shape of a
saddle. It is given by solving

p1 ` f 2
y qfxx ´ 2fxfyfxy ` p1 ` f 2

xqfyy “ 0.

In general, finding specific examples of minimal surfaces is highly non-trivial and is still a
heated topic of ongoing research.

5. Stability of Minimal Surfaces

We now talk about the stability of minimal surfaces, which is closely related to the second
derivative of the volume functional.

Definition 5.1. We say that a minimal surface Σ is stable if :V p0q ě 0 for any compactly
supported variation F .

Now, suppose Σ is stable and has trivial normal bundle, and we consider a variation F
as in the second half of the previous section. Since Σ is stable, the second variation formula
implies

(5.2)

ż

Σ

f ¨ Lf ď 0

Here we assume Ft “ fN . Expanding the definition of L, the above formula is
ż

Σ

f∆Σf ` RicMpNqf 2
` |A|

2f 2
ď 0
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Integration by parts of the first term gives

(5.3)

ż

Σ

p|A|
2

` RicMpNqqf 2
ď

ż

Σ

|∇Σf |
2

Suppose that Σ is compact, we may choose f ” 1, since we know we can find a variation F
such that Ft “ N by ODE theory. Then (5.3) becomes

(5.4)

ż

Σ

p|A|
2

` RicMpNqq ď 0

For an ambient manifold with Ricci curvature strictly greater than 0, we know by (5.4) that
there is no compact stable minimal surface with trivial normal bundle.

Now, let L be the same operator as defined above. If L is related to some stable minimal
surface, then we also say L is stable.

Lemma 5.5. L is stable if there is a function u ą 0 on Σ such that Lu “ 0.

Proof. Let f be compactly supported on Σ, and u be a function satisfying the assumption
in the problem. We have

div

ˆ

f 2∇u

u

˙

“ 2fx∇f,
∆u

u
y ´ f 2 |∇u|2

u2

Define q :“ |A|2 ` RicMpnq. Since Lu “ 0, we have

∆u

u
“ ´q

and thus
ż

Σ

f 2q “ ´

ż

Σ

f 2 |∇u|2

u2
` 2fx∇f,

∇u

u
y

“

ż

Σ

ˇ

ˇ

ˇ

ˇ

f∇u

u
´ ∇f

ˇ

ˇ

ˇ

ˇ

2

` |∇f |
2

ď

ż

Σ

|∇f |
2

which is equivalent to the stability condition if we use integration by parts. □

As a corollary of the lemma, we can show that minimal graphs in R3 are always stable.

Corollary 5.6. Minimal graphs in R3 are stable.

Proof. Let Bz be the constant normal vector field pointing to the z-direction of R3, and we
define f :“ xBz,Ny, where N is the outward normal of the graph Σ. Since Σ is a graph, we
must have f ą 0. By the above lemma, we are done if we can show that Lf “ 0. We now
fix an x P Σ and choose a local geodesic frame txiui around x. Now

∆Σf “
ÿ

i

∇Bi∇BixBz,Ny “
ÿ

i

xBz,∇Bi∇BiNy “
ÿ

i

ÿ

j

xBz,∇Bip´AjiBjqy

“
ÿ

i

ÿ

j

xBz,´pAji,iqBjy “
ÿ

i

ÿ

j

xBz,´Aji∇BiBjy
(5.7)

It follows from Bianchi identity that Aji,i “ Aii,j and we omit the computation details here.
Since mean curvature identically vanish on Σ minimal, Aii,j “ 0. Since we selected geodesic
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frame around x, we have ∇Σ
Bi

Bj “ 0 and thus ∇BiBj “ ApBi, Bjq. Continuing with (5.7), we
have

∆Σf “ ´|A|
2
xBz,Ny “ ´|A|

2f

Note that the ambient manifold R3 is flat, so we don’t need to consider the Ricci curvature
term of L. Thus we have already obtained the desired result. □

6. Simons Inequality

In this section we introduce some Simons inequalities, which illustrate some important
techniques in minimal surface theory. They also get used very often in curvature estimates.
The results we want to show are the following:

Theorem 6.1. Suppose Σn is a minimal hypersurface of Rn`1. Then

∆ΣA “ ´|A|
2A

In particular, we have
1

2
∆Σ|A|

2
“ |A|

4
` |∇A|

2

and thus
1

2
∆Σ|A|

2
ě ´|A|

4

The key ingredient of the proof are the Gauss and Codazzi equations.

Theorem 6.2 (Chapter 6 of [3]). Let M Ă M be smooth manifolds, and R be the Riemannian
curvature tensor on M .

(1) (Gauss Equation) Let X, Y, Z, T be vector fields on M that are tangent to M , then

xRpX, Y qZ, T y “ xRpX, Y qZ, T y ´ xApY, T q, ApX,Zqy ` xApX,T q, ApY, Zqy

(2) (Codazzi Equation) Let X, Y, Z be vector fields on M that are tangent to M , and η a
vector on M that is normal to M . Then

xRpX, Y qZ, ηq “ XpxApY, Zq, ηyq ´ xAp∇XY, Zq, ηy

In our context, Σ is a hypersurface of Rn`1, and the ambient manifold has R “ 0. The
Gauss equation becomes

Rijkl “ AikAjl ´ AjkAil

and the Codazzi equation becomes

Ajk,i “ Aik,j

We also state a lemma here, whose proof is direct computation.

Lemma 6.3. We have

Aij,jk ´ Aij,kl “
ÿ

m

RlkimAmj ` RlkjmAmi

where R denotes the Riemannian curvature tensor on Σ.

With all these tools in hand we are now ready to prove the Theorem.
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Proof of Theorem 6.1. We fix a point x and let choose a geodesic frame around x. Then

∆ΣApBi, Bjq “
ÿ

k

Aij,kk

By Codazzi equation and the lemma, the above equation is equal to
ÿ

k

Aik,jk “
ÿ

k

Akk,ij `
ÿ

k,m

RkjimAmk ` RkjkmAmi

The first summand above on the right hand side above gives the Hessian of mean curvature,
and the second summand gives the rest of the desired terms in our conclusion by Gauss
equation. □

Note that mean curvature vanishes identically if Σ is minimal. If we apply Theorem 6.1
to Σ minimal, the Hessian term vanishes and we get the Simons equality. Now our proof is
complete.
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