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Abstract. These notes record some foundational knowledge for PDE research and are
evolving over time. They are supposed to be high-level sketches, so intuitions and main
ideas are emphasized, and sometimes only references are given for detailed proofs. At the
meantime, examples are computed, and proofs not easily found in literature are supplied.
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1. Two Fundamental Interpolation Theorems

We begin with the Marcinkiewicz interpolation theorem, which sometimes is also called
“real interpolation.”

Theorem 1.1 (Marcinkiewicz Interpolation). Let X and Y be measurable spaces, and T
a sublinear operator that takes a dense subset of measurable functions on X to measurable
functions on Y . For 1 ď p ď q ď 8, if T is weak pp, pq and weak pq, qq, then T is strong
pr, rq for all p ă r ă q.

The proof crucially replies on layer-cake decomposition of integralsˆ
|g|

p dµ “

ˆ
λp´1µpt|g| ą λuq dλ

and the decomposition

Tf “ T pf1t|f |ďλu ` f1t|f |ąλuq ď T pf1t|f |ďλuq ` T pf1t|f |ąλuq

For a slightly more general version of Marcinkiewicz interpolation and a proof, see [4].

Theorem 1.2 (Riesz-Thorin Interpolation). Let X and Y be measurable spaces, and T a
sublinear operator that takes a dense subset of measurable functions on X to measurable
functions on Y . Let 1 ď p0, q0, p1, q1 ď 8. If

}T }Lp0ÑLq0 ď k0, }T }Lp1ÑLq1 ď k1

then T is bounded Lpθ Ñ Lqθ for

1

pθ
“

θ

p0
`

1 ´ θ

q0
,

1

qθ
“

θ

p1
`

1 ´ θ

q1
with

}T }LpθÑLqθ ď kθ0k
1´θ
1

The proof of Riesz-Thorin (as can be found in [4]) relies on the Three-Lines Lemma in
complex analysis:

Lemma 1.3. We define S :“ t0 ă Repzq ă 1u, S0 :“ tRepzq “ 0u, and S1 :“ tRepzq “ 1u.
Suppose F is continuous on S and analytic on S, with

sup
S0

F ď k0, sup
S1

F ď k1

Then for x ` iy P S we have
F px ` iyq ď k1´x

0 kx1

In fact, the proof is robust and can be extended to multilinear settings. As an example,
we present the following proposition.

Proposition 1.4 (Bilinear Riesz-Thorin). Let Bpf, gq be a bilinear map in f and g. Assume
that there is a constant c ą 0 such that

}Bpf, gq}L2 ď c}f}L8}g}L2

and
}Bpf, gq}L2 ď c}f}L2}g}L8

Then for every p, q ą 1 satisfying 1
p

` 1
q

“ 1
2
, there is a constant c1 ą 0, independent of f

and g, such that
}Bpf, gq}L2 ď c1

}f}Lp}g}Lq
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Proof. For convenience, we suppose f is a measurable function onX, g a measurable function
on Y , and Bpf, gq a measurable function on Z. As in the proof of Riesz-Thorin, it suffices
to show the result for simple functions, which are dense in every Lp (1 ď p ď 8). Let ΣX ,
ΣY , ΣZ be the space of simple functions on X, Y , and Z, respectively. By duality, we wish
to establish the following claim:

‚ If f P ΣX , g P ΣY are such that }f}Lp “ }g}Lq “ 1, then for any h P ΣZ such that
}h}L2 “ 1, we have

ˇ

ˇ

ˇ

ˇ

ˆ
Bpf, gqh

ˇ

ˇ

ˇ

ˇ

ď c

To show the claim, we begin by assuming that f , g, and h have form f “
řm

1 aj1Ej
,

g “
řn

1 bj1Fj
, h “

řr
1 cj1Gj

, where Fj’s are disjoint, Ej’s are disjoint, and Fj’s are disjoint,
and aj, bj, cj’s are non-zero. This can be achieved by writing the functions as their standard
representations. Then we can write aj “ |aj|e

iθj , bj “ |bj|e
iφj , and cj “ |cj|e

iψj , in their
polar forms. For 0 ă t ă 1, we define

1

pt
“
t

2
,

1

qt
“

1 ´ t

2

where }f}Lpt “ }g}Lqt “ 1. We also define

fz :“
n

ÿ

j“1

|aj|
z{teiθj1Ej

, gz :“
m
ÿ

j“1

|bj|
1´z
1´t eiφj1Fj

ϕpzq :“

ˆ
Bpfz, gzqh “

ÿ

j,k,l

Aj,k,l|aj|
z{t

|bk|
1´z
1´t |cl|

where

Ajkl “ eipθj`φk`ψlq

ˆ
Bp1Ej

, 1Fk
q1Gk

Thus ϕpzq is an entire function of z bounded in the strip 0 ď Rez ď 1. Notice that
ˇ

ˇ

ˇ

ˇ

ˆ
Bpf, gqh

ˇ

ˇ

ˇ

ˇ

“ ϕptq

So by the Hadamard three lines lemma it suffices to show that |ϕpzq| ď c for Rez “ 0 and
Rez “ 1. Now, note that for s P R,

|fis| “

n
ÿ

j“1

|aj|
Reis{t1Ej

ď 1

|gis| “

n
ÿ

j“1

|aj|
Re 1´is

1´t 1Ej
“

n
ÿ

j“1

|aj|
1

1´t1Ej

and thus

|ϕpisq| ď }Bpfis, gisq}L2}h}L2 ď c}fis}L8}gis}L2 ď c}gis}
1

1´t

Lqt “ c

Similarly we can calculate

|ϕp1 ` isq| ď c

and thus we have shown the claim as desired. □
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2. Maximal Functions

We introduce the Calderón-Zygmund decomposition. Let f P L1
locpRnq and λ ą 0. We

define

Ωλ :“ tMdf ą λu

and we can write

Ωλ “ YjQj

where each Qj is a maximal dyadic cube. We note that in fact

1

|Qj|

ˆ
Qj

|fpxq| dx ě λ

because at every x P Ωλ one can find a small enough cube on which the average of |f | is
greater than λ. Moreover, if Q̃j is the parent of Qj, we must have

1

|Q̃j|

ˆ
Q̃j

|fpxq| dx ă λ

otherwise there would be some y P Q̃jzΩλ having

Mdfpyq ě
1

|Q̃j|

ˆ
Q̃j

|fpxq| dx ě λ

contradicting the fact that y R Ωλ. In summary we have

λ ď
1

|Qj|

ˆ
Qj

|fpxq| dx ď
1

|Qj|

ˆ
Q̃j

|fpxq| ď 2nλ

This motivates the following definition/theorem:

Theorem 2.1 (Calderón-Zygmund Decomposition). Given f P L1
locpRnq and λ ą 0, we can

find a decomposition f “ g` b and a collection of mutually disjoint dyadic cubes tQjuj, such
that |g| ď 2nλ a.e., mQj

b “ 0 for every j, and

1

Qj

ˆ
Qj

|bpxq| dx ď 2n`1λ

Proof. We define

gpxq :“

"

fpxq x R Ωλ
1

|Qj |

´
Qj
fpxq dx x P Qj

and b “ f ´ g. According to our discussions above, this decomposition will do the job. □

3. BMO Spaces

We will see that BMO is a natural extension of L8 in many situations.

In this section, Q will be assumed to denote cubes in Rn unless otherwise stated. Without
special notices, supQ means supremum over all cubes in Rn.

Definition 3.1. For f P L1
locpRnq, We define

(3.2) mQf :“
1

|Q|

ˆ
Q

fpxq dx
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to be the average of f over Q, and the mean oscillation

(3.3) }f}˚ :“ sup
Q

1

|Q|

ˆ
Q

|f ´ mQf | dx

If }f}˚ is finite, we say that f has bounded mean oscillation, or more concisely that f is
a BMO function.

The natural next step is to look at the collection of BMO functions, and see whether } ¨ }˚ is
a well-defined norm that makes BMO a Banach space. However, we note that } ¨ }˚ is only
a seminorm, since }f `C}˚ “ }f}˚ for any constant C. Fortunately this is the only issue to
remedy, and we make the following definition:

Definition 3.4 (BMO). We define the equivalence relation f „ g iff f ´ g is a constant,
and let rf s be the equivalence class of f . We define the normed linear space

(3.5) BMOpRd
q :“ trf s : f : Rd

Ñ C is a BMO functionu

equipped with the norm

(3.6) }rf s}˚ :“ sup
Q

1

|Q|

ˆ
Q

|f ´ mQf | dx

Remark 3.7. (1) It can be seen that the norm (3.6) is well-defined.
(2) We often abuse notation, and write rf s and f interchangeably.

Proposition 3.8 (Equivalent BMO Norms). We have the following equivalent characteri-
zations of BMO norm:

(1) We have

1

2
}f}˚ ď sup

Q
inf
αPR

1

|Q|

ˆ
Q

|fpxq ´ α| dx ď 2}f}˚

(2) Moreover,

}f}˚ ď sup
Q

1

|Q|2

ˆ
Q

ˆ
Q

|fpxq ´ fpyq| dxdy ď 2}f}˚

Proof. (1) The second inequality is immediate. For the first inequality, notice that
ˆ
Q

|f ´ mQf | ď

ˆ
Q

|f ´ α| `

ˆ
Q

|α ´ mQf |

ď

ˆ
Q

|f ´ α| `

ˇ

ˇ

ˇ

ˇ

ˆ
Q

α ´ f

ˇ

ˇ

ˇ

ˇ

ď 2

ˆ
Q

|f ´ α|

Dividing both sides by |Q| and taking infimum over all α we get the desired result.
(2) Noticing that

|fpxq ´ fpyq| ď |fpxq ´ mQf | ` |fpyq ´ mQf |
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we easily obtain the second inequality. For the first inequality, note that

1

|Q|

ˆ
Q

|f ´ mQf | “
1

|Q|

ˆ
Q

ˇ

ˇ

ˇ

ˇ

fpxq ´
1

|Q|

ˆ
Q

fpyq dy

ˇ

ˇ

ˇ

ˇ

dx

ď
1

|Q|2

ˆ
Q

ˆ
Q

|fpxq ´ fpyq| dydx

□

Proposition 3.9. We have the following properties of BMO:

(1) pBMO, } ¨ }˚q is a Banach space.
(2) log |x| is a BMO function. In particular, L8 is a proper subset of BMO.

Proof. (1) We only show completeness here. Let tfnun be a Cauchy sequence in BMO,
and Q Ă Rn be a cube. Then

1

|Q|

ˆ
Q

|pfn ´ mQfnq ´ pfm ´ mQfmq| dx “
1

|Q|

ˆ
Q

|pfn ´ fmq ´ mQpfn ´ fmq| dx

“ }fn ´ fm}BMO

showing that tfn´mQfnun is a Cauchy sequence in L1pQq. By completeness of L1pQq,
tfn ´ mQfnun has a limit fQ. Moreover, for Q1 Ă Q2, we have

fQ1 ´ fQ2 “ lim
nÑ8

pfn ´ mQ1fnq ´ pfn ´ mQ2fnq

“ lim
nÑ8

mQ2fn ´ mQ1fn

on Q1. We know the last line of the above equation is a constant and we define it
by CpQ1, Q2q. We could also see that the constants have transitivity. That is, for
Q1 Ă Q2 Ă Q3,

CpQ1, Q3q “ CpQ1, Q2q ` CpQ2, Q3q

Now, we define Qk as the cube centered at the origin and has radius k, where k is a
natural number. Then the sequence tQkuk exhausts Rn, meaning that

Ť

kQk “ Rn

and Qk1 Ă Qk2 for k1 ď k2. We define a function f on Rn such that

f “ fQk
` CpQ1, Qkq

on Qk.
First of all we want to see that f is well-defined. If Qk Ă Ql, we have

fQk
´ fQl

“ CpQk, Qlq “ CpQ1, Qlq ´ CpQ1, Qkq

and thus

fQk
` CpQ1, Qkq “ fQl

` CpQ1, Qlq

so different representations of f are equal. We then want to see that fn Ñ f in BMO.
Let Q be a cube. Then Q Ă Qk for some k large enough, and

1

|Q|

ˆ
Q

|fn ´ mQpfnq ´ pf ´ mQpfqq| “
1

|Q|

ˆ
Q

|fn ´ mQpfnq ´ pfQk
´ mQpfQk

qq|

Note that

fn ´ mQpfnq ´ fQk
` mQpfQk

q “ pfn ´ mQpfnq ´ fQq ` pfQ ´ fQk
` mQpfQk

qq
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and also

fQ ´ fQk
` mQpfQk

q “ lim
nÑ8

pmQk
pfnq ´ mQpfnqq ` lim

nÑ8
mQpfn ´ mQk

pfnqq

“ lim
nÑ8

pmQk
pfnq ´ mQpfnq ` mQpfnq ´ mQk

pfnqq

“ 0

So we have

lim
nÑ8

1

|Q|

ˆ
Q

|fn ´ mQpfnq ´ pf ´ mQpfqq| “ lim
nÑ8

1

|Q|

ˆ
Q

|fn ´ mQpfnq ´ fQ| dx “ 0

by our definition of fQ.
Note that Q is arbitrary, and we claim that in fact fn Ñ f in BMO. Suppose on

the contrary that fn doesn’t converge to f in BMO, then there is a δ ą 0, a sequence
of indices nk P N, and a sequence of cubes Qnk

Ă Rn such that

1

|Qnk
|

ˆ
Qnk

|fnk
´ f ´ mQpfnk

´ fq| dx ě δ

However, for every fixed nk, we have

lim
nÑ8

1

|Qnk
|

ˆ
Qnk

|fn ´ f ´ mQpfn ´ fq| dx “ 0

So if we extract the diagonal we should also have

lim
kÑ8

1

|Qnk
|

ˆ
Qnk

|fnk
´ f ´ mQpfnk

´ fq| dx “ 0

which gives us a contradiction. Hence our claim is proven, and BMO is indeed
complete.

(2) By Proposition 3.8, we just need to show that there is a universal constant C such
that for every Bpx0, Rq Ă Rn, we have

1

|Bpx0, Rq|

ˆ
Bpx0,Rq

| log |x| ´ α| dx ď C

for some α depending on x0 and R. As a first step, we do a change of variables to
arrive at

1

|Bpx0, Rq|

ˆ
Bpx0,Rq

| log |x| ´ α| dx “

ˆ
Bp0,1q

| log |x0 ` Rx| ´ α| dx

Suppose |x0| ď 2R. Then we note that for x P Bp0, 1q,

| log |x0 ` Rx| ´ logR| “

ˇ

ˇ

ˇ

ˇ

log

ˇ

ˇ

ˇ

ˇ

x `
x0
R

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

and thusˆ
Bp0,1q

| log |x0 ` Rx| ´ logR| “

ˆ
Bp0,1q

ˇ

ˇ

ˇ

ˇ

log

ˇ

ˇ

ˇ

ˇ

x `
x0
R

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˆ
Bp´x0{R,3q

ˇ

ˇ

ˇ

ˇ

log

ˇ

ˇ

ˇ

ˇ

x `
x0
R

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˆ
Bp0,3q

| log |x|| ă 8
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For |x0| ą 2R, we note that for x P Bp0, 1q,

| log |x0 ` Rx| ´ logp|x0|{2q| ď

ˇ

ˇ

ˇ

ˇ

log

ˆ

2 `
2R|x|

|x0|

˙
ˇ

ˇ

ˇ

ˇ

ď log 3

and thusˆ
Bp0,1q

| log |x0 ` Rx| ´ logp|x0|{2q| dx ď max

ˆ

log 3,

ˆ
Bp0,3q

| log |x||

˙

so we have the desired conclusion.
□

Given a BMO function, we can actually construct a sequence of L8 functions to approxi-
mate it locally in L1.

Proposition 3.10. Define

fqpxq “

"

fpxq |fpxq| ď q
fpxq

|fpxq|
q |fpxq| ě q

for q ą 0. Then

(1) fq P L8 with }fq}L8 ď q.
(2) }fq}˚ ď }f}˚

(3) fq Ñ f locally in L1 as q Ñ 8.

Proof. We only prove (2). Note that for every x, y we have

|fqpxq ´ fqpyq| ď |fpxq ´ fpyq|

so for any cube Q we have

1

|Q|2

ˆ
Q

ˆ
Q

|fqpxq ´ fqpyq| dxdy ď
1

|Q|2

ˆ
Q

ˆ
Q

|fpxq ´ fpyq| dxdy

Taking supremum over Q we get the desired result. □

We now introduce the important John-Nirenberg inequality.

Theorem 3.11 (John-Nirenberg Inequality). There are universal constants C and λ such
that

(3.12) sup
Q

1

|Q|

ˆ
Q

exp

ˆ

λ

}f}˚

|f ´ mQf |

˙

dx ď C

Equivalently, there are universal constants C0 and λ0 such that

(3.13) |tx P Q : |f ´ mQf | ą t}f}˚u| ď C0e
´λ0t|Q|

Let’s see how (3.12) implies (3.13). Note that

C|Q| ě

ˆ
Q

exp

ˆ

λ

}f}˚

|f ´ mQf |

˙

dx

ě

ˆ
QXt|f´mQf |ąt}f}˚u

eλt dx

“ eλt|tx P Q : |f ´ mQf | ą t}f}˚u|

(3.14)
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as desired. Conversely,
ˆ
Q

exp

ˆ

´
λ

}f}˚

|f ´ mQf |

˙

dx “

ˆ 8

0

λe´λµ
|tx P Q : |fpxq ´ mQf | ą µ}f}˚u| dµ

ď C0

ˆ 8

0

e´pλ0`λqµ dµ

ď C

(3.15)

for some constant C ą 0.

Remember that in Proposition 3.9 we stated that log |x| is a typical BMO function that is
not L8. One important heuristic implication of John-Nirenberg is that logarithmic growth
is the most one can have in BMO space. To see this, consider fpxq :“ logp1{|x|q. Then on
the interval Q :“ p´a, aq, mQf “ 1 ´ log a. We compute that for λ ą 1,

|tx P Q : |f ´ mQf | ą λu| “ 2ae´λ´1
“ e´λ´1

|Q|

which is the rate given by John-Nirenberg.
Now we prove the John-Nirenberg inequality. The key ingredient of the proof is a Calderon-

Zygmund type decomposition.

Proof. First of all we claim that it suffices to assume f P L8 by the above proposition.
Suppose we can establish the result for L8 functions, then there exist λ,C ą 0 such that

sup
Q

1

|Q|

ˆ
Q

exp

ˆ

λ

}f}˚

|fqpxq ´ mQfq|

˙

dx ď C

Sending q Ñ 8 and using Fatou’s lemma we obtain the desired inequality.
Let Q0 Ă Rn be a cube, and we use ∆pQ0q to denote the collection of dyadic cubes with

respect to Q0. Define g :“ pf ´ mQ0fq1Q0 , and

S :“ tMg ą 2}f}˚u

We know we can write S “
Ť

j Qj as a union of maximal dyadic cubes. For every such
maximal dyadic cube Qj, we know that

1

|Qj|

ˆ
Qj

|g| ě 2}f}˚,
1

|Q̃j|

ˆ
Q̃j

|g| ď 2}f}˚

where Q̃ is the parent cube of Q. Now,
ˆ
Q0

exp

ˆ

λ

}f}˚

|f ´ mQ0f |

˙

“

ˆ
Q0XS

exp

ˆ

λ

}f}˚

|f ´ mQ0f |

˙

`

ˆ
Q0´S

exp

ˆ

λ

}f}˚

|f ´ mQ0f |

˙

ď

ˆ
Q0XS

exp

ˆ

λ

}f}˚

|f ´ mQ0f |

˙

` e2λ|Q0|

and if we denote

Xpλq :“ sup
Q

1

|Q|

ˆ
Q

exp

ˆ

λ

}f}˚

|f ´ mQf |

˙
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we haveˆ
Q0XS

exp

ˆ

λ

}f}˚

|f ´ mQ0f |

˙

“
ÿ

j

ˆ
Q0XQj

exp

ˆ

λ

}f}˚

|f ´ mQ0f |

˙

ď
ÿ

QjXQ0‰H

|Qj|
1

|Qj|

ˆ
Qj

exp

ˆ

λ

}f}˚

|f ´ mQ0f |

˙

We decomposeˆ
Qj

exp

ˆ

λ

}f}˚

|f ´ mQ0f |

˙

“ exp

ˆ

λ

}f}˚

|mQ0f ´ mQj
f |

˙ˆ
Qj

exp

ˆ

λ

}f}˚

|f ´ mQj
f |

˙

Note that

|mQ0f ´ mQj
f | ď

1

|Qj|

ˆ
Qj

|f ´ mQ0f | ¨ 1Q0

ď
2n

|Q̃j|

ˆ
Q̃j

|f ´ mQ0f |

ď 2n`1
}f}˚

and that
ÿ

j

|Qj| ď
1

2}f}˚

ˆ
YjQj

|g| ď
|Q0|

2

so we have
1

|Q0|

ˆ
Q0

exp

ˆ

λ

}f}˚

|f ´ mQ0f |

˙

ď
e2

d`1λ

2
Xpλq ` e2λ

Taking supremum over Q0, we get the desired result if we take a small enough λ ą 0. □

Corollary 3.16. Let f P BMO. Then for 1 ď p ă 8, f P LplocpRnq and there is a constant
Cp ą 0 such that

sup
Q

ˆ

1

|Q|

ˆ
Q

|fpxq ´ mQf |
p dx

˙
1
p

ď Cp}f}˚

Moreover, for 1 ď p ă 8,

}f}˚,p :“ sup
Q

ˆ

1

|Q|

ˆ
Q

|fpxq ´ mQf |
p dx

˙
1
p

is a norm on BMO that is equivalent to } ¨ }˚.

The proof of Corollary 3.16, which is essentially a layer-cake decomposition plus John-
Nirenberg, can be easily adapted to give the following converse of John-Nirenberg.

Corollary 3.17. Given a function f , suppose there exist constants C1, C2, and K such that
for any cube Q and λ ą 0,

|tx P Q : |fpxq ´ mQf | ą λu| ď C1e
´C2λ{K

|Q|

Then f P BMO.
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4. Ap Weights

Definition 4.1 (Ap Weights). Let 1 ă p ă 8. A locally integrable function ω is an Ap
weight if there is some constant C such that

ˆ

1

|Q|

ˆ
Q

ω

˙ˆ

1

|Q|

ˆ
Q

ω1´p1

˙p´1

ď C

for all cubes Q Ă Rn. Here 1
p

` 1
p1 “ 1. We say ω is an A1 weight if there is a C ą 0 such

that for any cube Q,
ωpQq

|Q|
ď Cωpxq

for a.e. x P Q.

Proposition 4.2. Suppose f is in BMO, then for sufficiently small λ ą 0, there is some
C ą 0 such that

1

|Q|

ˆ
Q

exp |λf | ă C

for all cubes Q.

Theorem 4.3. Let f be a locally integrable function such that exppfq P A2, then f is in
BMO. Conversely, if f is in BMO, then for sufficiently small λ ą 0, exppλfq is an A2

weight.

5. Hardy Spaces and Relation with BMO

Definition 5.1. Let 1 ă q ď 8. We say a is a p1, pq atom if there is a cube Q such that

(1) Supp a Ă Q.

(2) a P LppQq with }a}LppQq ď |Q|
1
p

´1

(3) a has mean 0, namely
´
Q
apxq dx “ 0

We write the collection of p1, pq atoms as ap. Note first that any element of ap is in L1pQq,
with

(5.2)

ˆ
Q

|apxq| dx ď

ˆ ˆ
Q

|apxq|
p

˙
1
p

|Q|
1
p1 ď 1

Moreover, we have by Holder’s inequality that ap1 Ă ap2 as long as p1 ă p2.

Definition 5.3. Let 1 ă p ď 8. We say that f P H1,ppRdq if there exists a sequence of
p1, pq atoms tajuj and a sequence of real numbers tλjuj such that

(1)
ř

j λj ă 8.

(2) fpxq “
ř

j λjaj

Moreover, we define

}f}H1,p :“ inf

"

ÿ

j

λj : fpxq “
ÿ

j

λjaj

*

Remark 5.4. (1)
ř

j λjaj converges in L
1.

(2) H1,p is Banach if 1 ă p ď 8.

Proposition 5.5. For 1 ă p ď 8, H1,p “ H1,8. We can thus define H1 :“ H1,p, where
1 ă p ď 8.
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We have the following important characterization of H1 and BMO spaces.

Theorem 5.6. pH1q˚ “ BMO.

6. An Interpolation Theorem for BMO

Marcinkiewicz interpolation theorem tells us that weak p1, 1q boundedness and strong
p8,8q boundedness together give us strong pp, pq boundedness for all 1 ă p ă 8. In
practical applications, the assumption on L8 boundedness is somtimes too strong, so in this
section we present an interpolation theorem that only assumes L8

c Ñ BMO boundedness
on the infinity end.

Lemma 6.1 (Good-λ-Inequality). Let p ą 0. Let u, v P L1
locpRnq, u, v non-negative. Assume

that

(1) infp1, uq P LppRnq.
(2) There exist ε ą 0 and 0 ă γ ă 1 such that

|tx P Rn : upxq ą p1 ` εqλ, vpxq ď λu| ď γ|tx P Rn : upxq ą λu|

Then there exists a constant C “ Cpε, γ, pq ą 0 such that

}u}Lp ď C}v}Lp

Proof. We first assume u P LppRnq. By layer-cake decomposition of the integral,

}u}
p
Lp “

ˆ 8

0

λp´1
|tu ą λu| dλ

“
1

p1 ` εqp

ˆ 8

0

λp´1
|tu ą p1 ` εqλu| dλ

ď
1

p1 ` εqp

ˆ ˆ 8

0

λp´1
|tu ą p1 ` εqλ, v ď λu| dλ `

ˆ 8

0

λp´1
|tv ą λu| dλ

˙

ď
γ

p1 ` εqp
}u}

p
Lp ` }v}

p
Lp

and thus
}u}Lp ď Cpp, ε, γq}v}Lp

If only infp1, uq P Lp, note that actually un :“ infpn, uq P Lp for every n P N. We have

}un}Lp ď Cpp, ε, γq}v}Lp

By Fatou’s lemma,
}u}Lp ď lim inf

nÑ8
}un}Lp ď Cpp, ε, γq}v}Lp

so we get the desired result. □

Definition 6.2 (Sharp Maximal Function). Let f P L1
locpRnq. We define

M#fpxq :“ sup
QQx

1

|Q|

ˆ
Q

|fpyq ´ mQf | dy

Remark 6.3. Note that M#f ď 2Mf , so M#f obeys all the corresponding bounds of Mf .

Lemma 6.4. Let f P LppRdq for some 1 ď p ă 8. Then we have for all λ ą 0 and γ ą 0
that

(6.5) |tMdf ą 2λ, M#f ď γλu| ď 2dγ|tMdf ą λu|
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Proof. The proof utilizes a Calderon-Zygmund type decomposition. We write

tMdf ą λu “
ď

j

Qj

as a union of maximal dyadic cubes, so we just need to show that for any Q P tQ1, ..., Qn, ...u,
we have

(6.6) |Q X tMdf ą 2λ, M#f ď γλu| ď 2dγ|Q|

By maximality of Q we know that the parent cube Q̃ of Q satisfies

1

|Q̃|

ˆ
Q̃

|f | ď λ

and we notice that for x in the left hand set of (6.6), we have

Mdpf1Qqpxq ą 2λ

Hence

Mdppf ´ mQ̃fq1Qqpxq ě Mdpf1Qqpxq ´ mQ̃f ą λ

Therefore, we have

|Q X tMdf ą 2λ, M#f ď γλu| ď |tMdppf ´ mQ̃fq1Qq ą λu|

ď
1

λ

ˆ
Q

|f ´ mQ̃f |

“
2n|Q|

λ

1

|Q̃|

ˆ
Q̃

|f ´ mQ̃f |

ď
2n|Q|

λ
inf
xPQ

M#fpxq

ď 2nγ|Q|

as desired. □

Lemma 6.7. Suppose 1 ď p0 ă 8, and f P Lp0. Then for all p0 ă p ă 8, we have some
constant Cp such that

}Mdf}Lp ď Cp}M
#f}Lp

Proof. We first truncate the layer-cake decomposition of }Mdf}
p
Lp and denote

IN :“

ˆ N

0

pλp´1
|tMdf ą λu| dλ

Then we have

IN :“ 2p
ˆ N

2

0

pλp´1
|tMdf ą 2λu|

ď 2p
ˆ ˆ N

2

0

pλp´1
|tMdf ą 2λ, M#f ď γλu| dλ `

ˆ N
2

0

pλp´1
|tM#

ą γλu| dλ

˙

ď 2p`nγIN ` 2pγ´p
}M#f}

p
Lp
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Note that for every N , by Chebyshev inequality and Lp0 boundedness of Md,

IN À

ˆ N

0

pλp´p0´1
}f}

p0
Lp0 ă 8

so we have

IN ď
2p

γpp1 ´ 2p`nγq
}M#f}

p
Lp

Choosing γ ą 0 sufficiently small and sending N Ñ 8, we get

}Mdf}Lp ď Cp}M
#f}Lp

as desired. □

Theorem 6.8 (Interpolation). Let 1 ď p0 ă 8. If T sublinear is bounded Lp0 Ñ Lp0 and
L8
c Ñ BMO, then for any p0 ă p ă 8, T is bounded Lp XLp0 Ñ Lp, and T can be extended

continuously to Lp Ñ Lp.

Proof. Using a common density argument, we may assume f is smooth compactly supported.
Remark 6.3 together with assumptions on T give us

}pM#
˝ T qf}Lp0 ď C}Tf}Lp0 ď C 1

}f}Lp0

and also

}pM#
˝ T qf}L8 ď }Tf}˚ ď }f}L8

By Marcinkiewicz interpolation theorem, M# ˝T is bounded on Lp for all p0 ď p ď 8. Now,
we note that

Tfpxq ď pMd ˝ T qfpxq a.e.

and Lemma 6.7 gives us

}MdpTfq}Lp ď Cp}M
#

pTfq}Lp

for p0 ď p ă 8. Thus

}Tf}Lp ď }MdpTfq}Lp ď Cp}M
#

pTfq}Lp ď C 1
p}f}Lp

as desired. □

Remark 6.9. One can prove that if T is bounded H1 Ñ L1 and L8
c Ñ BMO, then T is

bounded on Lp for every 1 ă p ă 8. A proof can be found at the end of Chapter 3 of [8]. It
is in fact essentially to the proof above.

7. Calderon-Zygmund Operators

This section concerns operators of the form

Tfpxq :“

ˆ
Kpx, yqfpyq dy, x P Rn

where K is often assumed to be singular on the diagonal ∆ :“ tpx, xq : x P Rnu. The
prototypical example is the Hilbert transform, where Kpx, yq “ 1

x´y
, and formally we have

Hfpxq “

ˆ
1

x ´ y
fpyq dy

Of course, some extra work is needed if we want to make everything rigorous.
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Definition 7.1 (Standard Kernel). A standard kernel is a continuous function K : ∆c Ñ C
for which there exists a constant C ą 0 such that

(7.2) |Kpx, yq| ď
C

|x ´ y|n

(7.3) |∇xKpx, yq| ` |∇yKpx, yq| ď
C

|x ´ y|n`1

The smallest constant such that (7.2) and (7.3) hold is called the constant of the kernel K,
and is denoted CpKq.

Proposition 7.4. A standard kernel K satisfies the following properties:

(1) For a cube Q Ă Rn centered at x, f P L1
loc,

(7.5)

ˆ
QzQ

|Kpx, yq||fpyq| dy ď CpMfqpxq

(2) For Q Ă Rn and x, x0 P Q,

(7.6)

ˆ
Q

c
|Kpx, yq ´ Kpx0, yq||fpyq| dy ď CpMfqpx0q

(3) For any x P Rn and y0 P Q,

(7.7)

ˆ
Q

c

ˆ
Q

|Kpx, yq ´ Kpx, y0q||fpyq| dydx ď C|Q|pMfqpy0q

Definition 7.8. An operator T taking C8
c pRnq to L2pRnq is a Calderón-Zygmund operator

(CZO) if:

(1) T extends to a bounded operator L2 Ñ L2.
(2) There exists a standard kernel K such that for every f P L8

c pRnq,

Tfpxq “

ˆ
Kpx, yqfpyq dy a.e.

on pSupp fqc.

If T satisfies all properties above except for (1), then we say that T is associated with a
standard kernel K.

If T is a CZO, then we denote

(7.9) }T }CZ :“ }T }L2ÑL2 ` CpKq

We note that if p1q holds, then by a density argument we only needs to check (2) for a dense
subclass of L8

c , e.g. C
8
c pRnq.

The following property of a Calderón-Zygmund Operator will be useful. Let’s call it (H):
For Q Ă Rn, a P L8pRnq such that Supp a Ă Q, we have

(7.10)

ˆ
Q

|Ta| dx ď C}a}L8 |Q|
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The property (H) follows from L2 boundedness of T and Hölder’s inequality, since

ˆ
Q

|Ta| dx ď |Q|
1
2

ˆˆ
Q

|Ta|
2 dx

˙
1
2

ď C|Q|
1
2

ˆ ˆ
Q

|a|
2 dx

˙
1
2

ď C|Q|}a}L8

We now state our main theorem on Calderón-Zygmund operators.

Theorem 7.11. Let T be associated with a standard kernel. The following are equivalent:

(1) T satisfies (H).
(2) T is bounded H1,8 to L1.
(3) T is bounded L8

c to BMO.

Partial Proof. A complete proof can be found in Chapter 4 of [8]. Here we provide a proof
of how (1) implies (3). Suppose a P L8

c . Let Q Ă Rd be a cube, and x0 be the center of Q.
Then we decompose

a “ a1 ` a2 :“ a ¨ 1Q ` a ¨ 1Qc

First we use (H) to obtain

1

|Q|

ˆ
Q

|Ta1| ď
1

|Q|

ˆ
Q

|Ta1| ď C}a}L8

Since Q is arbitrary and C is independent of Q, we have

}a1}˚ :“ sup
Q

inf
β

1

|Q|

ˆ
Q

|a ´ β| ď C}a}L8

Now we study a2. By Proposition 7.4, we have

1

|Q|

ˆ
Q

|Ta2 ´ Ta2px0q| ď
1

|Q|

ˆ
Q

ˆ
Q

c
|Kpx, yq ´ Kpx, x0q||apyq| dydx

ď CMapx0q

ď C}a}8

showing that a2 is in BMO if we reason as above. Hence a P BMO, as desired. □

Remark 7.12. The proof above actually shows that T is bounded L8 Ñ BMO. Of course,
one has to make sense of how to define T on L8 functions that don’t necessarily vanish at
infinity. Details can be found in [2].

The above theorem 7.11 together with the interpolation theorem 6.8 give the following
powerful implication about Calderón-Zygmund operators. Note that if we use the interpo-
lation mentioned in Remark 6.9 , we immediately get the result below.

Corollary 7.13. Suppose T is a Calderón-Zygmund operator. Then T is bounded on Lp for
1 ă p ă 8.
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Proof. By Theorem 6.8 and Theorem 7.11, we have T bounded on Lp for 2 ď p ă 8. Now
suppose 1 ă q ď 2 and q1 be defined such that 1

p
` 1

p1 “ 1. For f P Lq, note that

}Tf}Lq “ inf
}g}

Lq1 “1

ˆ
gpxqTfpxq dx “ inf

}g}
Lq1 “1

ˆ
T ˚gpxqfpxq dx(7.14)

The adjoint T ˚ is also a Calderon-Zygmund operator, associated with standard kernel

K˚
px, yq “ Kpy, xq

so Hölder’s inequality gives

p7.14q ď Cq1}g}Lq1 }f}Lq ď Cq}f}Lq

as desired. □

Remark 7.15. All the work above, in particular, proves that the Hilbert transform is bounded
on Lp for 1 ă p ă 8. One can also prove boundedness of Hilbert transform on Lp for
1 ă p ď 2 using Marcinkiewicz interpolation theorem, and then get to 2 ă p ă 8 using a
duality argument.

8. Littlewood-Paley Theory

We begin by constructing a dyadic partition of unity. Let φ : Rd Ñ r0, 1s be such that
φ P C8

c and

φpxq “

"

1 |x| ď 1.4
0 |x| ą 1.42

and we define ψpxq “ φpxq´φp2xq. For N P 2Z, we define ψNpxq “ ψpx{Nq. Then we notice
that

ÿ

NP2Z

ψNpxq “ 1

for all x ‰ 0.

Definition 8.1. Let f P SpRnq. The Littlewood-Paley projection to frequencies |ξ| „ N is
given by

zPNfpξq “ pfpξqψNpξq

or equivalently

PNf “ f ˚ rNd
qψpN ¨qs

We also define
{PďNfpξq “ pfpξqφpξ{Nq

or equivalently

PNf “ f ˚ rNd
qφpN ¨qs

Moreover, we define

PąN “ 1 ´ PďN

and define

PMď...ďN “
ÿ

MďKďN

PK

Remark 8.2. The name “projection” can be slightly misleading, since actually P 2
N ‰ PN .
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Theorem 8.3 (Mikhlin Multiplier Theorem). Let m : Rdzt0u Ñ C be such that |∇kmpξq| ď

|ξ|´k uniformly for |ξ| ‰ 0 and 0 ď k ď d ` 2. Then

f ÞÑ mpDqf

is bounded on Lp for 1 ă p ă 8.

The proof is basically use Littlewood-Paley decomposition to write m “
ř

jmj, where
each mj is easy to handle. Using Calderón-Zygmund theory, we can show Lp boundedness
of mjpDq with nice enough operator norm, and then we can sum in j to get Lp boundedness
of m.

Theorem 8.4 (Bernstein Inequalities). Let s ě 0 and 1 ď p ď q ď 8. For simplicity of
notation, we write Lp for LppRdq. We have the following inequalities:

(1) }PďNf}Lp Àp,s,d N
´s}|∇|sPěNf}Lp.

(2) }PďN |∇|sf}Lp Àp,s,d N
s}PďNf}Lp.

(3) }PN |∇|˘sf}Lp „p,s,d N
˘s}PNf}Lp.

(4) }PďNf}Lq À N
d
p

´ d
q }PďNf}Lp.

(5) }PNf}Lq À N
d
p

´ d
q }PNf}Lp

We also have a characterization of the Sobolev norms:

Proposition 8.5. For f P S,

(1) }f} 9Hs „
`

ř

NP2Z N
2s}PNf}2L2

˘1{2
“

›

›N s}PNf}L2

›

›

l2N

(2) }f}Hs „ }Pď1f}L2 `
`

ř

Ną1N
2s}PNf}2L2

˘1{2

Proposition 8.6 (Product Estimate). If f, g P SpRdq and a, b ě 0, then the following holds:

}|∇|
af |∇|

bg}L2pRdq À }f}Ha`bpRdq}g}L8 ` }f}L8}g}Ha`bpRdq

Proof. The proof of these product estimates are all of the same spirit, so what we are doing
here may generalize to other product-type estimates. We decompose

|∇|
af |∇|

bg “

ˆ

ÿ

N

PN |∇|
af

˙ˆ

ÿ

M

PM |∇|
bg

˙

“
ÿ

N,M

pPN |∇|
afqpPM |∇|

bgq

“
ÿ

M

pPďM |∇|
afqpPM |∇|

bgq ` pPąM |∇|
afqpPM |∇|

bgq

We shall only show that
›

›

›

›

ÿ

M

pPďM |∇|
afqpPM |∇|

bgq

›

›

›

›

L2

À }f}L8}g}Ha`b

since the proof that
›

›

›

›

ÿ

M

pPąM |∇|
afqpPM |∇|

bgq

›

›

›

›

L2

À }g}L8}f}Ha`b

is analogous.
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We want to look at

PK
`

pPďM |∇|
afqpPM |∇|

bgq
˘

“ PK
`

pPďM{8|∇|
afqpPM |∇|

bgq
˘

` PK
`

pP8{Mď¨ďM |∇|
afqpPM |∇|

bgq
˘

“: A ` B

(8.7)

Note that the Fourier support of pPďM{8|∇|afqpPM |∇|bgq is on within the annulus tM{16 ď

|ξ| ď 4Mu, so A is non-zero only when M{32 ď K ď 8M . Moreover, we can see that B is
also non-zero only when K „ M . Hence

PK

ˆ

ÿ

M

pPďM |∇|
afqpPM |∇|

bgq

˙

“
ÿ

M„K

PK
`

pPďM{8|∇|
afqpPM |∇|

bgq
˘

` PK
`

pP8{Mď¨ďM |∇|
afqpPM |∇|

bgq
˘

and thus
›

›

›

›

PK

ˆ

ÿ

M

pPďM |∇|
afqpPM |∇|

bgq

˙
›

›

›

›

L2

ď
ÿ

M„K

}PK
`

pPďM{8|∇|
afqpPM |∇|

bgq
˘

}L2 ` }PK
`

pP8{Mď¨ďM |∇|
afqpPM |∇|

bgq
˘

}L2

We define φp ¨

M
q and ψp ¨

M
q to be the multiplier functions used in PďM and PM , and also

φapξq :“ |ξ|
aφpξq, ψbpξq :“ |ξ|

bψpξq

φa,Mpξq :“ φapξ{Mq, ψb,Mpξq :“ ψbpξ{Mq

so that

pPďM |∇|
afqpPM |∇|

bgq “ F´1

ˆ

Ma`b
pφa,M ¨ pfqpψb,M ¨ pgq

˙

“ Ma`b
pφ_

a,M ˚ fqpψ_
b,M ˚ gq

“ pφ_
a,M ˚ fqpMa`bψ_

b,M ˚ gq

Then by Young’s convolution inequality and the fact that ψb,M is supported on t|ξ| „ Mu,
we have

›

›PK
`

pPďM |∇|
afqpPM |∇|

bgq
˘
›

›

L2

›

›pPďM |∇|
afqpPM |∇|

bgq
›

›

L2

À }f}L8Ma`b
}ψ_

b,M ˚ g}L2

À Ma`b
}f}L8}PMg}L2

and similar argument gives

}PK
`

pP8{Mď¨ďM |∇|
afqpPM |∇|

bgq
˘

}L2 À Ma`b
}f}L8}PMg}L2
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Therefore,
›

›

›

›

ÿ

M

pPďM |∇|
afqpPM |∇|

bgq

›

›

›

›

2

L2

“
ÿ

K

›

›

›

›

PK

ˆ

ÿ

M

pPďM |∇|
afqpPM |∇|

bgq

˙
›

›

›

›

2

L2

À }f}L8

ÿ

K

ÿ

M„K

M2a`2b
}PMg}

2
L2

À }f}L8

ÿ

M

M2a`2b
}PMg}

2
L2

À }f}L8}g}Ha`b

as desired. □

9. Pseudodifferential Operators

Pseudodifferential operators refer to operators of the form

Tafpxq :“

ˆ
apx, ξq pfpξqe2πixξ dξ

where a is called the symbol of the operator.

Example 9.1. (1) The simplest case is when a ” 1. In this case Ta is the inverse Fourier

transform of pf , meaning that formally it is just the identity.
(2) Suppose a “ x. Then formally Tafpxq “ xfpxq.
(3) Suppose a “ ξ. Then since multiplying in the frequency space corresponds to differ-

entiating in the physical space, Tafpxq „ f 1pxq.

Definition 9.2. We say Ta is a pseudodifferential operator of order m if

|B
β
xB

α
ξ apx, ξq| ď Cα,βp1 ` |ξ|q

m´|α|

for any α, β P N. We denote the collection of such operators by Sm.

We first present the following useful lemma, which exemplifies what is called the TT ˚

argument.

Lemma 9.3 (Cotlar-Stein Lemma). Let H be a Hilbert space and tTjujPZ a sequence of
bounded operators on H with adjoints tT ˚

j ujPZ. Let tapjqujPZ be a sequence of non-negative
numbers such that

}TiT
˚
j } ` }T ˚

i Tj} ď api ´ jq

Then for all integers n and m, n ď m, we have
›

›

›

›

m
ÿ

i“n

Ti

›

›

›

›

ď

8
ÿ

´8

apiq1{2

Proof. First of all let S :“
řm
n Ti. Then S is a bounded operator on H. By the TT ˚ theorem,

we have

(9.4) }S} “ }pSS˚
q
k
}
1{2k

Meanwhile, we expand to obtain

pSS˚
q
k

“
ÿ

nďj1,...,j2kďm

Tj1T
˚
j2
...T2k´1T

˚
2k
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On the one hand we have

}pSS˚
q
k
} ď }Tj1T

˚
j2

}...}T2k´1T
˚
2k} ď apj1 ´ j2q...apj2k´1 ´ j2kq

and on the other hand we have

}pSS˚
q
k
} ď }Tj1}}T ˚

j2
Tj3}...}T ˚

2k´2T2k´1}}T ˚
2k} ď ap0q

1{2apj2 ´ j3q...apj2k´2 ´ j2k´1qap0q
1{2

So taking geometric mean of the right hand sides above we get

}pSS˚
q
k
} ď ap0q

1{2
ÿ

nďj1,...,j2kďm

apj1 ´ j2q
1{2apj2 ´ j3q

1{2...apj2k´1 ´ j2kq
1{2

ď ap0q
1{2

pm ´ n ` 1q

ˆ 8
ÿ

´8

apiq1{2

˙2k´1

so by (11.3) we have

}S} ď ap0q
1{4k

pm ´ n ` 1q
1{2k

ˆ 8
ÿ

´8

apiq1{2

˙
2k´1
2k

and sending k Ñ 8 we get

}S} “

›

›

›

›

m
ÿ

i“n

Ti

›

›

›

›

ď

8
ÿ

´8

apiq1{2

as desired. □

We have the following application of the Cotlar’s lemma to Hilbert transform:

Example 9.5. For f P L2pRq we define the truncated Hilbert transform

Tjfpxq “

ˆ
2jď|t|ď2j`1

fpx ´ tq

t
dt

We note that

|Tjfpxq| ď

ˆ
2jď|t|ď2j`1

ˇ

ˇ

ˇ

ˇ

fpx ´ tq

t

ˇ

ˇ

ˇ

ˇ

dt

ď
4

2j`2

ˆ
|t|ď2j`1

|fpx ´ tq| dt

ď 4Mfpxq

where M is the Hardy-Littlewood maximal operator. Thus Tj is bounded on L2. Using
Cotlar’s lemma, we can show that any finite sum of the Tj’s are uniformly bounded.

Theorem 9.6 (Calderón-Vaillancourt). Let Ta be a pseudodifferential operator of order 0.
Then Ta extends to a bounded operator on L2.

A proof can be found on [6].
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10. T(1) Theorem

10.1. Carleson’s Measure. The T p1q theorem was originally published in [1]. Here we
follow the proof of T p1q Theorem in [5], for which some preliminaries on Carleson’s measures
are needed.

Definition 10.1 (Carleson’s Measure). A positive measure ν on Rn`1
` is a Carleson’s measure

if for every cube Q Ă Rn, we have

νpQ ˆ p0, lpQqqq ď C|Q|

where lpQq is the side length of Q. The infimum over all possible values of C is called the
Carleson’s constant and is usually denoted }ν}.

Given an open subset E Ă Rn, we let

pE :“ tpx, tq P Rn`1
` : Bpx, tq Ă Eu

Then we have the following lemma.

Lemma 10.2. If ν is a Carleson’s measure in Rn`1
` and E Ă Rn is open, then

νp pEq ď C}ν}|E|

Proof. The proof is done using Calderon-Zygmund decomposition. □

Theorem 10.3. Let ϕ be a bounded, integrable function which is positive, radial, and de-
creasing. For t ą 0, let ϕtpxq “ t´nϕpt´1xq. Then a measure ν is a Carleson’s measure if
and only if for every p, 1 ă p ă 8,ˆ

Rn`1
`

|ϕt ˚ fpxq|
p dνpx, tq ď C

ˆ
Rn

|fpxq|
p dx

The constant C is comparable to }ν}.

Here is another important theorem that connects Carleson’s measure to BMO functions.

Theorem 10.4. Let b P BMO and ψ P SpRnq be such that
´
ψ “ 0. Then the measure ν

defined by

dν “ |b ˚ ψtpxq|
dxdt

t

is a Carleson’s measure such that }ν} À }b}2˚.

Proof. □

Corollary 10.5. Let ϕ and ψ be as in the previous two theorems, and b P BMO. Then for
1 ă p ă 8 we haveˆ

Rn`1
`

|ϕt ˚ fpxq|
p

¨ |pb ˚ ψtqpxq|
dxdt

t
ď C

ˆ
Rn

|fpxq|
p dx

Proof. The proof is essentially the previous two theorems put together. □



NOTES ON HARMONIC ANALYSIS 23

10.2. T(1) Theorem and Applications. In order to show that an operator is a Calderón-
Zygmund operator, a key assumption to verify is L2 boundedness. The T p1q theorem provides
a criterion, saying that as long as the operator and its adjoint sends the constant function
1 to BMO and satisfies some other reasonable assumptions, then it is actually bounded on
L2. Of course, some work is needed to make everything rigorous.

To simplify the presentation, we state everything in the 1-dimensional domain R.

Definition 10.6 (Weak Boundedness Property, as in [5]). Given a function f , we define

fxt pyq :“
1

t
f

ˆ

y ´ x

t

˙

We say that T sastisfies the weak boundedness property (WBP), if there exists ϕ P C8
c pRq

radially symmetric and its derivative ψ “ ϕ1, such that for some ε ą 0,

(10.7) |xTψvt , ϕ
u
t y| À

1

t

1

1 ` |u´v
t

|1`ε
, |xT ˚ψvt , ϕ

u
t y| À

1

t

1

1 ` |u´v
t

|1`ε
for every t ą 0.

For convenience, we fix the notation

ptpxq :“
1

t

1

1 ` |x
t
|1`ε

, p :“ p1

Theorem 10.8. Let T : S Ñ S1 be a linear operator. If

(1) T sastisfies the weak boundedness property (WBP);
(2) T p1q P BMO;
(3) T ˚p1q P BMO;

Then T is bounded L2 Ñ L2.

We have several remarks on the T p1q Theorem before we start the proof. First of all we
need to make clear what does T p1q P BMO mean. One way to formulate it is the following:
we say T p1q P BMO if there exists a BMO function b such that

xT p1q, gy “ xb, gy

for all g P C8
c with mean 0.

The next remark is given by the following proposition.

Proposition 10.9. Suppose T is a singular integral operator associated with an anti-symmetric
kernel K, i.e.

Tfpxq “ p.v.

ˆ
|x´y|ąε

Kpx, yqfpyq dy “ lim
εÑ0

ˆ
|x´y|ąε

Kpx, yqfpyq dy

for some Kpx, yq “ ´Kpy, xq and f P C8
c pRq, then T automatically satisfies WBP. More-

over, T is bounded on L2 if and only if T p1q P BMO.

Proof. Let t ą 0. Suppose |x ´ y| ą 3t. Then since ψxt has mean 0, we can write

xTψxt , ϕ
y
t y “

¨
pKpz, uq ´ Kpz, xqqϕyt pzqψxt puq dudz

À

¨
1

|x ´ y|2
¨ |ϕyt pzq| ¨ |ψxt puq| dudz

À
t

|x ´ y|2
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where the first inequality follows from standard estimates and triangular inequality. Note
that

t

|x ´ y|2
“

1

t

1

|
x´y
t

|2
À

1

t

1

1 ` |
x´y
t

|2

where we have the last inequality because |
x´y
t

| ą 3.
Now suppose |x ´ y| ď 3t. Using antisymmetry, we may write

xTψxt , ϕ
y
t y “ p.v.

¨
Kpz, uqpϕyt pzqψxt puq ´ ϕyt puqψxt pzqq dudz

By mean value theorem, it is easy to verify that

|ϕyt pzqψxt puq ´ ϕyt puqψxt pzq| ď |ϕyt pzqψxt puq ´ ϕyt puqψxt puq| ` |ϕyt puqψxt puq ´ ϕyt puqψxt pzq|

ď p}ψxt }L8}pϕyt q
1
}L8 ` }pψxt q

1
}L8}ϕyt }L8q|u ´ z|

À
|u ´ z|

t3

(10.10)

Then we can use standard estimates to get

xTψxt , ϕ
y
t y À

ˆ
A

1

|u ´ z|

|u ´ z|

t3
dudz

where

A :“ tpu, zq : |ϕyt pzqψxt puq ´ ϕyt puqψxt pzq| ą 0u

Since ϕ is compactly supported, we have |u´x| À t, |z´ y| À t. Since |x´ y| ă 3t, we know
that |u ´ z| À t. It follows that |A| À t2, and thus

xTψxt , ϕ
y
t y À

1

t

Since |x ´ y| ď 3t, note that

1

t
À

1

t

1

1 ` |
x´y
t

|2

So we get the desired result. □

Proof of T(1) Theorem. Let ϕ and ψ be as above. We denote Ptf “ ϕt ˚ f and Qtf “ ψt ˚ f ,
and since Pt is an approximation of identity, for f P S, we write

Tf “ lim
tÑ0

P 2
t TP

2
t f “ lim

εÑ0

ˆ 1{ε

ε

BtpP
2
t TP

2
t fq dt

To show that the first equality holds, we claim that if Tn Ñ T in S1 and fn Ñ f P S, then
Tnfn Ñ Tf . This claim is a corollary of the following Banach-Steinhaus theorem in Frechét
space.

Lemma 10.11 (Banach-Steinhaus). Let X be a Frechét space and Y be a normed space,
and let tϕαuα be a family of continuous linear maps X Ñ Y . If supα }ϕpxq} ă 8 for every
x P X, then tϕαuα is a equicontinuous family.
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For convenience, we abuse notation by writing
ˆ 8

0

BtpP
2
t TP

2
t fq dt “ lim

εÑ0

ˆ 1{ε

ε

BtpP
2
t TP

2
t fq dt

and using chain rule and linearity of T , we may writeˆ 8

0

BtpP
2
t TP

2
t fq dt “

ˆ 8

0

ptBtP
2
t qpTP 2

t fq
dt

t
`

ˆ 8

0

P 2
t T ptB2

tP
2
t fq

dt

t

The second integrand on the right hand side is the conjugate of the first, so we only study
the first integral. Taking Fourier transform in space, we have

{tBtP 2
t g “ 2tϕptξqξpϕ1

ptξqpgpξq

“ 2 pψptξqxψ1ptξqpgpξq

“ 2 {Q1,tQtg

where ψ1pxq “ xϕpxq and Q1,tg “ ψ1,t ˚ g. Thus the integral we are interested in can be
rewritten as

´2

ˆ 8

0

Q1,tQtTP
2
t f
dt

t
“: ´2

ˆ 8

0

Q1,tLtPtf
dt

t

so we have

Ltg “ QtTPtg “ ψt ˚ rT pψt ˚ gqs

“

ˆ
ψtpx ´ yqT pψt ˚ gqpyq dy

“

¨
T ˚

pψxt qpyqϕyt pzqgpzq dzdy

“

ˆ ˆ ˆ
T ˚

pψxt qpyqϕzt pyq dy

˙

gpzq dz

“

ˆ
xT ˚

pψxt q, ϕzt ygpzq dz

For convenience, we define

ltpx, zq :“ xT ˚
pψxt q, ϕzt y

Observe that the assumptions of T(1) theorem give us

ltpx, zq À ptpx ´ zq

and that

Ltp1q “ xT ˚
pψxt q, 1y “ xψxt , T p1qy “ ψt ˚ b

Now, we decomposeˆ 8

0

Q1,tLtPtf
dt

t
“

ˆ 8

0

Q1,tLtp1qPtf
dt

t
`

ˆ 8

0

Q1,tpLtPtf ´ Ltp1qPtfq
dt

t

“:

ˆ 8

0

Q1,ttpψt ˚ fqpψt ˚ bqu
dt

t
` Epfq
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and we begin by estimating Epfq. By duality, assume g P S satisfies }g}L2 “ 1, then

xg, Epfqy “

ˆ ˆ 8

0

Q1,tpgqpLtPtf ´ Ltp1qPtfq
dtdx

t

ď

ˆ ˆ ˆ 8

0

|Q1,tpgq|
2dtdx

t

˙1{2ˆ ˆ ˆ 8

0

ˇ

ˇ

ˇ

ˇ

ˆ
ltpx, yqpPf pyq ´ Ptfpxqqdy

ˇ

ˇ

ˇ

ˇ

2
dtdx

t

˙1{2

By Plancherel, ˆ ˆ 8

0

|Q1,tpgq|
2dtdx

t
“

ˆ 8

0

ˆ
|xψ1ptξqpgpξq|

2dξdt

t

With a change of variable t “ tξ, the above equation becomesˆ
|pgpξq|

2

ˆ ˆ
|xψ1ptq|

2dt

t

˙

dξ À }g}
2
L2 “ 1

At the mean time, Minkowski integral inequality gives

ˆ ˆ 8

0

ˇ

ˇ

ˇ

ˇ

ˆ
ltpx, yqpPtfpyq ´ Ptfpxqqdy

ˇ

ˇ

ˇ

ˇ

2
dtdx

t

À

ˆ 8

0

¨
|ltpx, yqpPtfpyq ´ Ptfpxqqdy|

2dxdydt

t

“

ˆ 8

0

¨
|ptpuq|

2
|Ptfpyq ´ Ptfpy ` uq|

2dudydt

t

“

ˆ 8

0

¨
|ptpuq|

2
|pϕptξq|

2
|eiuξ ´ 1|

2
| pfpξq|

2dudξdt

t

Àδ

ˆ ˆ
|ppuq|

2uδdu

˙1{2ˆ ˆ 8

0

|pϕptq|
2tδ´1dt

˙1{2ˆ ˆ
| pfpξq|

2dξ

˙1{2

If we fix a δ ă ε, the above integral is

À }f}
2
L2

as desired. For the term ˆ 8

0

Q1,ttpψt ˚ fqpψt ˚ bqu
dt

t

we use a duality argument as above, and appeal to Corollary 10.5 to get that it is bounded
by an absolute constant. Now the proof is complete. □

As an application to T p1q theorem, we study certain Cauchy integral operators. Suppose
we have a Lipshitz graph Γ :“ tpx,Apxqq : x P Ru. For convenience, we denote zpxq :“
x ` iApxq, and consider the operator

Tfpxq :“ p.v.

ˆ
z1pyq

zpxq ´ zpyq
fpyq dy

Proposition 10.12. There is a sufficiently small constant c ą 0 such that T is bounded on
L2pRq as long as z is Lipschitz with }A1}L8 ď c.
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Proof. We define the operator

Cfpxq :“ p.v.

ˆ
fpyq

zpxq ´ zpyq
dy “ p.v.

ˆ
fpyq

x ´ y ` ipApxq ´ Apyqq
dy

and are done with the proof if we can show C is bounded on L2. To see this, assume for now
that C is bounded on L2, then Tf “ Cpfz1q and thus

}Tf}L2 “ }Cpfz1
q}L2 ď }fz1

}L2 ď }f}L2

where we have the last inequality since }z1}L8 is bounded.
Now our task is reduced to showing boundedness of C on L2, which we establish using

the T p1q theorem. Since the kernel of C is antisymmetric, we only need to show that
Cp1q P BMO.

Direct calculation gives

Cfpxq “
ÿ

n

p´iqnp.v.

ˆ
fpyq

x ´ y

ˆ

Apxq ´ Apyq

x ´ y

˙n

dy

assuming that }A1}L8 is small enough. We denote

Cnfpxq :“

ˆ
fpyq

x ´ y

ˆ

Apxq ´ Apyq

x ´ y

˙n

dy

and claim that Cnp1q “ Cn´1pA
1q. Integrating by parts at least formally, we have

Cnp1q “

ˆ ˆ

Apxq ´ Apyq

x ´ y

˙n
1

x ´ y
dy

“
1

n

ˆ
pApxq ´ Apyqq

n
By

1

px ´ yqn
dy

“

ˆ ˆ

Apxq ´ Apyq

x ´ y

˙n´1
A1pyq

x ´ y
dy

“ Cn´1pA1
q

which establishes the claim. One just needs to be slightly more careful for a rigorous deduc-
tion, and we do not show all the details here.

We want to show that there exists some C ą 0 such that

(10.13) }Ckp1q}˚ ď Ck`1
}A1

}
k´1
L8

uniformly in k, and we achieve it by induction. For the base case, note that

C1p1q “ C0pA
1
q “ πHpA1

q

and thus
}C1p1q}˚ ď C}A1

}L8

in view of Theorem 7.11 and Remark 7.12. Now, suppose (10.13) is true for k. We have

}Ck`1}L8ÑBMO ď C1pC2pk ` 1q}A1
}
k
L8 ` }Ck}L2ÑL2q

if we look at the proof we had for Theorem 7.11 and keep track of the dependence on
constants. Here }Ck}L2ÑL2 ă 8 by induction hypothesis, antisymmetry of the kernel of
Ck, and the T p1q theorem. Keeping track of dependence on constants in the proof of T(1)
Theorem, we get

}Ck}L2ÑL2 ď C3C
k`1
4 }A1

}
k
L8
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Choosing C sufficiently large with respect to C1, C2, C3, C4 and independent of k, we get

}Ck`1}L8ÑBMO ď Ck`2
}A1

}L8

and the conclusion follows from induction. Therefore,

}Cp1q}˚ ď
ÿ

k

}Ckp1q}˚ ď
ÿ

k

Ck`1
}A1

}
k´1
L8

which is finite if }A1}L8 is sufficiently small. Now the proof is complete. □

11. Cauchy Integral and Hilbert Transform

In this section, we explore the connection between Cauchy integral and Hilbert transform.
This connection and things of similar spirit are used in the study of free boundary problems.

We assume η : R Ñ R is a Lipschitz function such that

lim
xÑ´8

ηpxq “ lim
xÑ`8

ηpxq “ 0

and let
Ω :“ tpx, yq : x P R, y ă ηpxqu

and
Σ :“ BΩ “ tpx, ηpxqq : x P Ru

Suppose z : R Ñ C is a parametrization Σ, we define the Hilbert transform associated with
Σ to be

Hfpαq “
1

πi
p.v.

ˆ
fpβqzβpβq

zpαq ´ zpβq
dβ :“ lim

εÑ0

1

πi

ˆ
|β´α|ąε

fpβqzβpβq

zpαq ´ zpβq
dβ

The goal of this section is to prove the following proposition that characterizes holomorphic
functions on Ωptq.

Proposition 11.1. Let g P Lp for some 1 ă p ă 8. Then

(1) g is a boundary value of a holomorphic function G such that Gpzq Ñ 0 as |z| Ñ 8 if
and only if Hg “ g.

(2) 1
2
pI`Hqg is the boundary value of a holomorphic function G on Ω such that Gpzq Ñ 0

as |z| Ñ 8.
(3) H1 “ 0.

Let f : Σ Ñ C be induced by g such that

fpzpβqq :“ gpβq

We also define

Gpzq :“
1

2πi

ˆ
R

fpzpβqqz1pβq

z ´ zpβq
dβ “

1

2πi

ˆ
Σ

fpζq

z ´ ζ
dζ

on Ω.
Henceforth, we suppose z is an arclength parametrization of Σ such that there are constants

c, C ą 0 such that

c ď

ˇ

ˇ

ˇ

ˇ

zpαq ´ zpβq

α ´ β

ˇ

ˇ

ˇ

ˇ

ď C

for α, β P R.
Now, we state and prove several preparatory lemmas before we begin the proof of the

theorem.
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Lemma 11.2 (Plemelj Formula). Let g P C8
c pRq. For any α P R, we have

(11.3) lim
zÑzpαq

Gpzq “
1

2
gpαq `

1

2
Hgpαq

where in the limit we have z P Ω.

Proof of Lemma. We begin with the case that g P C8
c pRq. Then there are some β1 ă β2 P R

such that g is supported in pβ1, β2q. We define

Γ :“ tzpβq : β1 ď β ď β2u

so that
1

2πi

ˆ
Σ

fpζq

z ´ ζ
dζ “

1

2πi

ˆ
Γ

fpζq

z ´ ζ
dζ

Now, we consider an extension of f such that fpzq is constant on tRepzq “ au for every
a P R, and abusing notations a little bit we still write this extended function as fpzq. Note
that fpzq is Lipschitz. Then we can writeˆ

Γ

fpζq ´ fpzq

ζ ´ z
dζ `

ˆ
Γ

fpzq

ζ ´ z
dζ “

ˆ
Γ

fpζq ´ fpzq

ζ ´ z
dζ ` log

ˆ

ζ2 ´ z

ζ1 ´ z

˙

where the log function is defined on C ´ tia : a ě 0u. Now, since f is Lipschitz, the first
summand above behaves well if we send z Ñ zpαq by dominated convergence, and the second
summand also behaves well if we send z Ñ zpαq by continuity of log on its domain.
Having shown that the limit on the left hand side of (11.3) exists, we compute that it

equals the right hand side. In particular, it suffices to show

lim
εÑ0

Gpzpαq ´ iεz1
pαqq “

1

2
gpαq `

1

2
Hgpαq

Note that changing variables β “ α ` εγ, we haveˆ
R

gpβqz1pβq

zpαq ´ iεz1pαq ´ zpβq
dβ “

ˆ
R

εgpα ` εγqz1pα ` εγq

zpαq ´ iεz1pαq ´ zpα ` εγq

At the mean time, we also haveˆ
|β´α|ąε

gpβqz1pβq

zpαq ´ zpβq
dβ “

ˆ
|γ|ě1

εgpα ` εγqz1pα ` εγq

zpαq ´ zpα ` εγq
dγ

Therefore,

2πiGpzpαq ´ iεz1
pαqq ´ πiHgpαq

“

ˆ
R

gpβqz1pβq

zpαq ´ iεz1pαq ´ zpβq
dβ ´

ˆ
|β´α|ąε

gpβqz1pβq

zpαq ´ zpβq
dβ

“

ˆ
R

εgpα ` εγqz1pα ` εγq

zpαq ´ iεz1pαq ´ zpα ` εγq
´

ˆ
|γ|ě1

εgpα ` εγqz1pα ` εγq

zpαq ´ zpα ` εγq
dγ

“

ˆ
R
gpα ` εγq

ˆ

z1pα ` εγq

γ zpαq´zpα`εγq

εγ
´ iz1pαq

´
1

γ

z1pα ` εγq

zpαq´zpα`εγq

εγ

1t|γ|ě1u

˙

dγ

Sending ε Ñ 0 and applying dominated convergence theorem, which is applicable since z
parametrizes a Lipschitz curve, the above equation goes to

´gpαq

ˆ
R

1

γ ` i
´

1

γ
1t|γ|ě1u dγ “ πigpαq
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which means
2πi lim

εÑ0
Gpzpαq ´ iεz1

pαqq ´ πiHgpαq “ πigpαq

so we have the desired conclusion g P C8
c pRq. □

Having shown this lemma, we want to extend our result from C8
c pRq to LppRq, where

1 ă p ă 8. We define

KΣpx, yq :“
1

πi

1

zpxq ´ zpyq

and have the following theorem by Calderon.

Theorem 11.4 (Calderon, David). A singular integral operator associated with KΣ is a
Calderon-Zygmund operator.

Since z1 is bounded above, the above theorem immediately gives us the following important
corollary, which is worth being called a theorem.

Theorem 11.5. H is a bounded operator Lp Ñ Lp, where 1 ă p ă 8.

At this point, we notice that we are done if we can show that for any g P LppRq, the
(non-tangential) limit

(11.6) lim
zÑzpαq

Gpzq :“ lim
zÑzpαq

1

2πi

ˆ
R

gpβqz1pβq

z ´ zpβq
dβ

exists for every α P R, since we know by Theorem 11.5 that the right hand side of (11.3)
is well-behaved if the input is in LppRq. We wish to apply the standard density argument
in harmonic analysis, so we need to define a non-tangential maximal function related to the
convergence in (11.6).

For simplicity of presentation, we shall do the case where the Lipschitz curve Σ is just the
real line R, since the proof for general case is similar. Henceforth zpxq “ x for every x P R,
and we denote

Hfpαq “
1

πi
p.v.

ˆ
fpβq

α ´ β
dβ

We first define several things that shall be used soon.

Definition 11.7. For t ą 0, we define the Poisson kernel on R2 as

Ptpxq “
t

x2 ` t2

and the conjugate Poisson kernel on R2 as

Qtpxq “
x

x2 ` t2

Remark 11.8. We have this terminology since Ptpxq ` iQtpxq is a holomorphic function on
the lower half plane, with respect to the variable z “ x ´ it.

Definition 11.9 (Non-tangential Maximal Functions). For α P R and 0 ă γ ă π
2
, we first

define the cone
Γγpαq :“ tpx,´tq : x P R, t ą 0, |x ´ α| ¨ tanpγq ă tu

Then we define

Mfpαq :“ sup
Γγpαq

ˇ

ˇ

ˇ

ˇ

ˆ
R

gpβq

z ´ β
dβ

ˇ

ˇ

ˇ

ˇ
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We also define the auxiliary maximal functions

N1fpαq :“ sup
px,´tqPΓγpαq

|Pt ˚ fpxq|

N2fpαq :“ sup
px,´tqPΓγpαq

|Qt ˚ fpxq|

Our goal is to show that M is a bounded operator Lp Ñ Lp for 1 ă p ă 8, and we will
establish this by first showing that N1 and N2 are both bounded operator on Lp Ñ Lp.

Proposition 11.10. N1 defines a bounded operator Lp Ñ Lp, for any 1 ă p ă 8.

A discussion of Proposition 11.10 can be found in [2]. The key ingredient to the proof
is the following classical lemma in harmonic analysis. The proof of the lemma can also be
found in [2].

Lemma 11.11. Suppose ϕ is dominated by a positive integrable radially decreasing function
ψ. Then there is some constant C ą 0 only depending on ψ such that for any f P Lp we
have

sup
tą0

|ϕt ˚ fpxq| ď Cf˚
pxq

where f˚ is the Hardy-Littlewood maximal function of f and

ϕtpxq :“
1

t
ϕ

ˆ

x

t

˙

We now establish the boundedness of N2.

Proposition 11.12. N2 defines a bounded operator Lp Ñ Lp, for any 1 ă p ă 8.

Proof. We first assume f P SpRq. In [2] the author directly computes that

(11.13) Qt ˚ f “ Pt ˚ pHfq

for every t ą 0 using Fourier transform. Note that this implies that (11.13) holds for every
f P Lp, sinceH is bounded on Lp, convolution by Pt is bounded on Lp, and alsoQt˚fn Ñ Qt˚f
pointwisely for any sequence fn Ñ f in Lp by Holder’s inequality. Then for any t ą 0, α P R,
0 ă γ ă π{2 and px,´tq P Γγpαq,

Qt ˚ fpxq “ Pt ˚ pHfqpxq

and thus

N2fpxq ď N1pHfqpxq

Then Lp boundedness of both N1 and H gives us the desired result. □

Now we consider the operator M . Note that for x ´ it in Γγpαq,
ˇ

ˇ

ˇ

ˇ

ˆ
R

gpβq

x ´ β ´ it
dβ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˆ
R

gpβqpβ ´ itq

px ´ βq2 ` t2
dβ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˆ
R

gpβqβ

px ´ βq2 ` t2
dβ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˆ
R

gpβqt

px ´ βq2 ` t2
dβ

ˇ

ˇ

ˇ

ˇ

“ |Qt ˚ fpxq| ` |Pt ˚ fpxq|

ď N1fpαq ` N2fpαq
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So we have
Mfpαq ď N1fpαq ` N2fpαq

which leads to our desired result.

Proposition 11.14 (Boundedness of Non-tangential maximal function). M defines a bounded
operator Lp Ñ Lp, for any 1 ă p ă 8.

Now our proof is complete.
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