NOTES ON HARMONIC ANALYSIS

ZHENGJUN LIANG

ABSTRACT. These notes record some foundational knowledge for PDE research and are
evolving over time. They are supposed to be high-level sketches, so intuitions and main
ideas are emphasized, and sometimes only references are given for detailed proofs. At the
meantime, examples are computed, and proofs not easily found in literature are supplied.
(Last Updated: Jan 22, 2024.)
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2 ZHENGJUN LIANG

1. TwO FUNDAMENTAL INTERPOLATION THEOREMS

We begin with the Marcinkiewicz interpolation theorem, which sometimes is also called
“real interpolation.”

Theorem 1.1 (Marcinkiewicz Interpolation). Let X and Y be measurable spaces, and T
a sublinear operator that takes a dense subset of measurable functions on X to measurable
functions on' Y. For 1 < p < q < o, if T is weak (p,p) and weak (q,q), then T is strong
(ryr) for allp <r <q.

The proof crucially replies on layer-cake decomposition of integrals

1o di= [ 3 uttlal = A ax
and the decomposition
Tf =T ysen + [len) < T Lpen) + T gea)
For a slightly more general version of Marcinkiewicz interpolation and a proof, see [4].

Theorem 1.2 (Riesz-Thorin Interpolation). Let X and Y be measurable spaces, and T a
sublinear operator that takes a dense subset of measurable functions on X to measurable
functions on Y. Let 1 < pg,qo, p1,q1 < 0. If

T zro—ze0 < ko, [ T||zm—zar < K
then T is bounded LP* — L% for

1 6 1-86 1 0 N 1—-46

Po  Po 4o do 1 41

with
|T)[1r0 00 < Kghy™*
The proof of Riesz-Thorin (as can be found in [4]) relies on the Three-Lines Lemma in
complex analysis:
Lemma 1.3. We define S := {0 < Re(z) < 1}, Sy := {Re(z) = 0}, and S := {Re(z) = 1}.
Suppose F is continuous on S and analytic on S, with

sup F' < ko, supF <k
So Sl

Then for x + iy € S we have
F(x +iy) < ky "k}
In fact, the proof is robust and can be extended to multilinear settings. As an example,
we present the following proposition.

Proposition 1.4 (Bilinear Riesz-Thorin). Let B(f, g) be a bilinear map in f and g. Assume
that there is a constant ¢ > 0 such that

|B(f:9)r2 < e[ fllee gl
and

|B(f, @)z < el flr2lgllee=
Then for every p,q > 1 satisfying % + % = %, there is a constant ¢ > 0, independent of f
and g, such that

|B(f; 9> < €[ flrllg]Le
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Proof. For convenience, we suppose f is a measurable function on X, g a measurable function
on Y, and B(f,g) a measurable function on Z. As in the proof of Riesz-Thorin, it suffices
to show the result for simple functions, which are dense in every LP (1 < p < «). Let Xy,
Yy, Xz be the space of simple functions on X, Y, and Z, respectively. By duality, we wish
to establish the following claim:

o If f e Xy, ge Xy are such that |f||» = |g|z« = 1, then for any h € ¥, such that
|h|zz = 1, we have

/B(f,g)h‘ <c

To show the claim, we begin by assuming that f, g, and h have form f = > " ajlg,,
g =21bilp, h =27 ¢ilg,, where Fj's are disjoint, E}’s are disjoint, and F}’s are disjoint,
and a;, bj, ¢;’s are non-zero. This can be achieved by writing the functions as their standard
representations. Then we can write a; = |a;]e®, b; = |b;|e", and ¢; = |c;|e™7, in their
polar forms. For 0 <t < 1, we define

1t 11—t

e 2 @ 2
where | flre = [|g]ze = 1. We also define

n . UL 1— .
for= DNyl 1p,,  g.= ) |bi e L,
j=1

=1

1—
a; [/ by = |y

¢(z) = /B<fz>gz)h = > Ak

j7k7l

where
Ajkl _ ei(9j+<Pk~+¢’l)/B(1Ej’ ]‘Fk)le
Thus ¢(z) is an entire function of z bounded in the strip 0 < Rez < 1. Notice that
[ Bts.am] = o0

So by the Hadamard three lines lemma it suffices to show that |¢(z)| < ¢ for Rez = 0 and
Rez = 1. Now, note that for s € R,

| fis| = Z Ja; R g, < 1

j=1

n 1 n 1
—is 1
gis| = D la™ = 1, = ) a1,
= 1

and thus

_1
(0(is)| < [B(fis; gis)l|2 [Pl 22 < el fis| o= | gisl 2 < €l gisl o = ¢
Similarly we can calculate
(1 +is)| <c

and thus we have shown the claim as desired. O
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2. MAXIMAL FUNCTIONS

We introduce the Calderén-Zygmund decomposition. Let f € L} (R") and A > 0. We
define

= {Mdf > )\}
and we can write
=0,

where each (); is a maximal dyadic cube. We note that in fact

Ile Af(@)] dz > A

because at every x € (1) one can find a small enough cube on which the average of |f]| is
greater than A\. Moreover, if (); is the parent of ();, we must have

1
\f ()] de < A
1@l Ja
otherwise there would be some y € Qj\Q A having
1
Maf(y) = |f(@)] dx = A
|Q]| Qj

contradicting the fact that y ¢ 2. In summary we have

1

A< f(@) de < == [ [f(x)] <2
@il Jo, IQJI a;

This motivates the following definition/theorem:

Theorem 2.1 (Calderén-Zygmund Decomposition). Given f € L}, (R") and A > 0, we can
find a decomposition f = g+b and a collection of mutually disjoint dyadic cubes {Q;};, such
that |g| < 2"\ a.e., mg,b =0 for every j, and

5] [ (o)l dr <214y
Proof. We define
(z) = f(ff) x ¢ Q)
S ‘Q | fQ )dx zeQ;

and b = f — g. According to our discussions above, this decomposition will do the job. [

3. BMO SPACES

We will see that BMO is a natural extension of L™ in many situations.

In this section, ) will be assumed to denote cubes in R™ unless otherwise stated. Without
special notices, supgy means supremum over all cubes in R™.

Definition 3.1. For f e L} _(R"), We define

1
(3.2) mof = @/Qf(x) dx
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to be the average of f over (), and the mean oscillation
1
33) Il i=sup -z [ 1f = mof| da
Q 1QlJq

If | f||« is finite, we say that f has bounded mean oscillation, or more concisely that f is
a BMO function.

The natural next step is to look at the collection of BMO functions, and see whether | - ||, is
a well-defined norm that makes BMO a Banach space. However, we note that | - ||, is only
a seminorm, since | f + C||, = ||f||« for any constant C'. Fortunately this is the only issue to
remedy, and we make the following definition:

Definition 3.4 (BMO). We define the equivalence relation f ~ g iff f — ¢ is a constant,
and let [f] be the equivalence class of f. We define the normed linear space

(3.5) BMO(R?) := {[f] : f: R? - C is a BMO function}

equipped with the norm

1
(3.6) . = sup /Q | —maof]| dv

Remark 3.7. (1) Tt can be seen that the norm ({3.6) is well-defined.
(2) We often abuse notation, and write [f] and f interchangeably.

Proposition 3.8 (Equivalent BMO Norms). We have the following equivalent characteri-
zations of BMO norm:

(1) We have
1 1
- =l<<supinf—/ r) —al dr < 2|f
U7l <spint oo [ 17(0) — ol do <2011

(2) Moreover,

1
171 < sup 7 /Q /Q (@) — F(y)] dedy < 2] f]

Proof. (1) The second inequality is immediate. For the first inequality, notice that

/Q!f—mc;f!</Qf—al+/Q|a—me|
</Qf—oz|+'/Qoz—f‘
<2/Q\f—oz

Dividing both sides by |@| and taking infimum over all & we get the desired result.
(2) Noticing that

[f(@) = fW)l < [f(@) —maf|+[f(y) —mqf]
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we easily obtain the second inequality. For the first inequality, note that

@/@v—mczﬂ:ﬁ/‘f(x)—,%’/f(y)dydx
< g J, |, )~ sl s

Proposition 3.9. We have the following properties of BMO:

(1) (BMO, | - ||x) is a Banach space.
(2) log |x| is @ BMO function. In particular, L* is a proper subset of BMO.

Proof. (1) We only show completeness here. Let {f,}, be a Cauchy sequence in BMO,
and Q < R™ be a cube. Then

1
‘Q‘/| “mof) —(fm—mem)\dﬂSZ@/Q!(fn—fm)—mcz(fn—fm)\diﬁ

= an - fm”BMO

showing that {f,, —mq fn}n is a Cauchy sequence in L*(Q). By completeness of L'(Q),
{fn — mgfu}n has a limit fg. Moreover, for ()1 < @2, we have

le - sz = hm (fn - lefn) - (fn - szfn)

hm mQan mqo, fn

n—00

on ();. We know the last line of the above equation is a constant and we define it
by C(Q1,Q2). We could also see that the constants have transitivity. That is, for

Q1 < Q2 < Qs,
C(Q1,Q3) = C(Q1,Q2) + C(Q2,Qs)

Now, we define )5 as the cube centered at the origin and has radius k, where k is a
natural number. Then the sequence {Q;} exhausts R", meaning that | J, Qr = R"
and Q, < Q, for ky < ko, We define a function f on R™ such that

on Qk-
First of all we want to see that f is well-defined. If Q) < Q;, we have

for — fo = C(Qr, Q1) = C(Q1,Q1) — C(Q1,Qx)
and thus

fo, + C(Q1,Qk) = fo, + C(Q1, Q)

so different representations of f are equal. We then want to see that f,, — f in BMO.
Let @ be a cube. Then Q) < @y for some k large enough, and

1 1
@/Q’fn —mq(fa) = (f —mq(f))] = @/QU” —mo(f) = (fo. — mo(fo))l
Note that

fn — mQ(fn) - ka + mQ(ka) = (fn - mQ(fn) - fQ) + (fQ — ka + mQ(ka))
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and also
fa = fa. +mo(fa,) = lim (mq,(fa) —ma(fa)) + lim mo(fn —mo,(fa))
= lim (mqy (fn) = mqo(fa) + mo(fn) —mq,(fn))
)
So we have
tim 1 | o= mati) = (=m0 = Jim 2 [ 1 = ma(f) ~ fol dz =0

by our definition of fj.

Note that @ is arbitrary, and we claim that in fact f, — f in BMO. Suppose on
the contrary that f,, doesn’t converge to f in BMO, then there is a § > 0, a sequence
of indices n; € N, and a sequence of cubes (), = R" such that

1
|fnk - f_mQ(fnk - f)| dr =9
‘an| Qny,
However, for every fixed n;, we have
1
lim —— \fo = f—mo(fa— f)] de =0

n—0 |an| Qny,
So if we extract the diagonal we should also have
1
lim —— fo, —f—mo(fn, — )| dx =0
AT an! ‘ Q(fn. — )

which gives us a contradiction. Hence our claim is proven, and BMO is indeed
complete.

(2) By Proposition , we just need to show that there is a universal constant C' such
that for every B(xg, R) < R", we have

1
|B($07 R)| B(zo,R)

for some o depending on zy and R. As a first step, we do a change of variables to
arrive at

|log |z| — | de < C

1
—_— log|z| — « d:c:/ log |zg + Rx| — o dx
|B($0,R)| B(:co,R)‘ ’ | ’ B(0,1)| | ’ ‘ ‘

Suppose |zg| < 2R. Then we note that for z € B(0, 1),

|log |zo + Rx| — log R| =

log

Zo
R
and thus

/ |log |zo + Rx| — log R| =/
B(0,1) B(0,1)

~ [ Joglall <0
B(0,3)

log x+@

1
og 7

x—i——H

B(—~z0/R,3)
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For |zo| > 2R, we note that for x € B(0, 1),

2R
log <2 + ﬂ)‘ < log 3
ol
and thus

/ |log |z + Rx| — log(|zo|/2)| dx < max <log 3,/ | log ]x|)
B(0,1) B(0,3)

so we have the desired conclusion.

|log |zo + Rx| — log(|xo|/2)] <

O

Given a BMO function, we can actually construct a sequence of L* functions to approxi-
mate it locally in L!.

Proposition 3.10. Define

forq > 0. Then

(1) fq€ L* with | flle> < q

(2) I fall« < |1
(3) fq — [ locally in L' as ¢ — .

Proof. We only prove (2). Note that for every z,y we have

[fo(@) = fo(w)| < [f(2) = f(y)]

so for any cube () we have

|Q|2/ / ol@) = foly)] dady < |@\2/ / #(z) = Fy)] dedy

Taking supremum over () we get the desired result. 0
We now introduce the important John-Nirenberg inequality.

Theorem 3.11 (John-Nirenberg Inequality). There are universal constants C' and A\ such
that

1
(3.12) sup—/exp( |f—m f|)
Q 1@l Jq 11 ¢
Equivalently, there are universal constants Cy and Ao such that
(3.13) [{z € Q:|f —mofl > t|fl}] < Coe™|Q)]

Let’s see how (13.12)) implies (3.13)). Note that

ClQ| = / exp (| lf - me|)

(3.14) A o

>,
Qo{lf=mq fI>t]flx}

=eM{reQ:|f —mqf| > t|f].}]
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as desired. Conversely,

/?mp< Ao 7ngﬂ)dx=1/ AN (e Q: |F(@) — mof] > ulf)] du
. R

0

0

< CO/ e~ Qo+ A)u du
0

<C

(3.15)

for some constant C' > 0.

Remember that in Proposition we stated that log|z| is a typical BMO function that is
not L*. One important heuristic implication of John-Nirenberg is that logarithmic growth
is the most one can have in BMO space. To see this, consider f(z) := log(1/|z|). Then on
the interval Q) := (—a, a), mgf = 1 —loga. We compute that for A > 1,

{zeQ:|f —mafl > A} =2ae™ " = e7|Q)

which is the rate given by John-Nirenberg.
Now we prove the John-Nirenberg inequality. The key ingredient of the proof is a Calderon-
Zygmund type decomposition.

Proof. First of all we claim that it suffices to assume f € L* by the above proposition.
Suppose we can establish the result for L functions, then there exist A\, C' > 0 such that

1 A
Sup @/QeXp (Wlfq(x) - m@fql) dr < C

Sending ¢ — o0 and using Fatou’s lemma we obtain the desired inequality.
Let Qo = R™ be a cube, and we use A(Qy) to denote the collection of dyadic cubes with
respect to Qp. Define g := (f —mg, f)1lg,. and

= {Mg > 2[f].}

We know we can write S = Uj (); as a union of maximal dyadic cubes. For every such
maximal dyadic cube @);, we know that

1 / 1
o1 |tz 208l == [ 1ol <2l
|QJ| Qj |QJ‘ Q;

where Q is the parent cube of Q. Now,

A A
[ e (grlr=maf) = [ e (it —mafl) « [ e (gl —ma)

If—m%ﬂ>+eWQd

and if we denote

1
me?ﬁ/m(m“mw)
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we have

furso (b= mel) =S, 0 (g —me )

<er§¢®|er@ i 9 (7ol - maf1)

We decompose

A
/ eXp(fH*’f QOf’>‘e"p<W‘mQ°f ‘me”>/ eXp(\rfr*‘f mQﬂf‘)

Note that
mans ~ma,dl < g [ 1= mafl o
J
27L
|f = mq, f]
\Qa! J; i
< 2" £«
and that
|Qol
Q) [ =
Z ’ QHfH* U;iQ; 2
so we have
1 2d+1)\
— f—mo,f ) X(\) +e*
@l Ja, (Ifl!*‘ /| Y
Taking supremum over g, we get the desired result if we take a small enough \ > 0. 0

Corollary 3.16. Let f € BMO. Then for 1 <p < o, fe€ L} (R") and there is a constant
Cp > 0 such that

sup (ﬁ /Q F(2) — mofl? dw)p < Glfl.

Moreover, for 1 < p < o0,

1 »
Il o= sup (@ /Q f(2) — mofF dx)

is a norm on BMO that is equivalent to || - .

The proof of Corollary [3.16] which is essentially a layer-cake decomposition plus John-
Nirenberg, can be easily adapted to give the following converse of John-Nirenberg.

Corollary 3.17. Given a function f, suppose there exist constants Cy, Csy, and K such that
for any cube QQ and \ > 0,

{2 eQ:|f(x) —maf| > \}| < Cre” VK |Q)
Then f e BMO.
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4. A, WEIGHTS

Definition 4.1 (A, Weights). Let 1 < p < c0. A locally integrable function w is an A,
weight if there is some constant C' such that

() G )=

for all cubes ) < R™. Here %} + 1% = 1. We say w is an A; weight if there is a C' > 0 such
that for any cube @),
w(Q)

W < Cw(oc)

for a.e. x € Q.

Proposition 4.2. Suppose f is in BMO, then for sufficiently small X > 0, there is some
C > 0 such that .
— [ exp|\f| <C
Q| /Q
for all cubes Q.
Theorem 4.3. Let f be a locally integrable function such that exp(f) € Ag, then f is in

BMO. Conversely, if f is in BMO, then for sufficiently small A > 0, exp(Af) is an Ay
weight.

5. HARDY SPACES AND RELATION WITH BMO

Definition 5.1. Let 1 < g < 0. We say a is a (1, p) atom if there is a cube @ such that
(1) Supp a < Q.
. 1 4
(2) a e LP(Q) with [a] L) <[Q[”
(3) a has mean 0, namely [, a(z) dz =0

We write the collection of (1,p) atoms as «?. Note first that any element of «” is in L*(Q),
with

(52) | ool az < ( / \a(x)\p)‘l’\@\ﬁ' <1

Moreover, we have by Holder’s inequality that < < «P? as long as p; < ps.

Definition 5.3. Let 1 < p < . We say that f € HP(RY) if there exists a sequence of
(1,p) atoms {a;}; and a sequence of real numbers {)\;}; such that

(1) Zj )‘j < Q0.

(2) flz) =X, Njay

Moreover, we define
HfHHl,p ;= inf { Z )‘j . f(I) = 2 )\jaj}
J J

Remark 5.4. (1) 3, N\ja; converges in L.
(2) H'? is Banach if 1 < p < o0.

Proposition 5.5. For 1 < p < oo, HY" = HY°. We can thus define H' := H'?, where
1 <p<oo.



12 ZHENGJUN LIANG

We have the following important characterization of H' and BMO spaces.

Theorem 5.6. (H')* = BMO.

6. AN INTERPOLATION THEOREM FOR BMO

Marcinkiewicz interpolation theorem tells us that weak (1,1) boundedness and strong
(c0,00) boundedness together give us strong (p,p) boundedness for all 1 < p < o. In
practical applications, the assumption on L* boundedness is somtimes too strong, so in this
section we present an interpolation theorem that only assumes L — BMO boundedness
on the infinity end.

Lemma 6.1 (Good-M-Inequality). Let p > 0. Let u,v € L}, (R"), u,v non-negative. Assume
that

(1) inf(1,u) € LP(R™).
(2) There exist e >0 and 0 <y < 1 such that

{zeR":u(z) > (1 +e)A v(z) < M <7yl{z e R" 1 u(z) > A}
Then there ezists a constant C = C(g,7,p) > 0 such that
Jullzr < Clv]Le

Proof. We first assume u € LP(R™). By layer-cake decomposition of the integral,

o0
WEp:A N {u > A} dA

1 0
= N 1+ e)A}| dA
(1+s)p/0 [{u> (1 +e)A}
1 » o
EL (/0 N7 u > (1+ €)X, v < A} dA +/0 N {w > A d>\>
g
v oy e + Il

and thus
lullze < Cp,e,7)|v] e
If only inf(1,u) € LP, note that actually w, := inf(n,u) € LP for every n € N. We have
lunlle < Clp,e,7) 0] Lo
By Fatou’s lemma,
e < liminf [, < C(p.,7)o]

so we get the desired result. O

Definition 6.2 (Sharp Maximal Function). Let f € L}, .(R™). We define
MEfw) = s [ 17(0) = maf | dy
Q= |Q|
Remark 6.3. Note that M# f < 2M f, so M# f obeys all the corresponding bounds of M f.

Lemma 6.4. Let f € LP(R?) for some 1 < p < 0. Then we have for all A\ > 0 and v > 0
that

(6.5) {(Maf > 20, M*f <A} < 290{Muf > )
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Proof. The proof utilizes a Calderon-Zygmund type decomposition. We write
{Maf >N =@,
J

as a union of maximal dyadic cubes, so we just need to show that for any @ € {Q1, ..., Qn, ...},
we have

(6.6) Q n {Muf >2X\, M*f <M} <2%|Q)

By maximality of  we know that the parent cube Q of Q satisfies

1
- <A\
|@|/@‘f'

and we notice that for x in the left hand set of , we have
Ma(flg)(x) > 2X

Hence
Ma((f —mgpf)lo)(z) = Ma(flg)(z) —maf > A

Therefore, we have

|Q N {Maf > 2X, M* f <A} < [{Ma((f —mgf)le) > A}

l/\f—m@f\

QL [,

el
— xecng#f( z)

< 2(Q|
as desired. 0

Lemma 6.7. Suppose 1 < pg < o0, and f € LP°. Then for all po < p < o0, we have some
constant C,, such that

| Maflle < Cp| M f 10

Proof. We first truncate the layer-cake decomposition of |Myf|7, and denote

N
Iy ;:/ XM > A} d)
0

Then we have
N

Iy := 2p/2 XYM S > 2)))|
0

N

<2p(/2p)\p1]{]\/[df>2>\, M#f <y d)\+/
0

0

vl

pAPTH{M* > )} d/\)

< My Iy + 207 | MEF|D,
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Note that for every N, by Chebyshev inequality and LP° boundedness of My,

N
Iv < / PNl < oo
0

so we have
I e
< -
N p(1— 2y
Choosing v > 0 sufficiently small and sending N — oo, we get
|Maf e < G| M* f1o

as desired. 0

|M7 fI7

Theorem 6.8 (Interpolation). Let 1 < py < oo. If T sublinear is bounded LP° — LP° and
L¥ — BMO, then for any py < p < oo, T is bounded LP n LP° — LP and T can be extended

continuously to LP — LP.

Proof. Using a common density argument, we may assume f is smooth compactly supported.
Remark [6.3] together with assumptions on T give us

|(M# 0 T) fllrre < C|T f|rro < C'|| ] 1ro

and also
[(M# o T) flloe <[Tflls <[ fle=
By Marcinkiewicz interpolation theorem, M7 oT is bounded on L” for all py < p < o. Now,
we note that
Tf(x) < (MgoT)f(x) ae.
and Lemma [6.7| gives us
| Ma(Tf)|e < Col M#(Tf)| 10

for pg < p < . Thus
ITflee < |Ma(TF)|o < Co| MF(T )| 1o < Cofl fl1v
as desired. O

Remark 6.9. One can prove that if T is bounded H' — L' and L® — BMO, then T is
bounded on L? for every 1 < p < oo. A proof can be found at the end of Chapter 3 of [§]. It
is in fact essentially to the proof above.

7. CALDERON-ZYGMUND OPERATORS

This section concerns operators of the form

Tf(z) = / K(z,y)f(y) dy, zeR"

where K is often assumed to be singular on the diagonal A := {(z,z) : © € R"}. The
prototypical example is the Hilbert transform, where K(z,y) L and formally we have

i) = [ 1) dy

Of course, some extra work is needed if we want to make everything rigorous.
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Definition 7.1 (Standard Kernel). A standard kernel is a continuous function K : A® — C
for which there exists a constant C' > 0 such that

C
|z —y|"

(7.2) K (z,y)| <

C

|z —y[**!

The smallest constant such that (7.2]) and ([7.3)) hold is called the constant of the kernel K,
and is denoted C'(K).

(7.3) VoK (2, y)| + [V, K (2,y)] <

Proposition 7.4. A standard kernel K satisfies the following properties:
(1) For a cube Q = R" centered at x, f € L}

loc?

Q\Q
(2) For @ < R™ and x,xq € Q,

(7.5) / K ()| f )] dy < COMf) ()

(7.6) |1y~ Kol )] dy < COL) o)
Q
(3) For any x € R™ and yo € Q,
(.7) | [ 1K)~ Ko7 )] dyds < C1QI0) )
Q JQ

Definition 7.8. An operator T taking C*(R™) to L*(R") is a Calderén-Zygmund operator
(CZO) if:

(1) T extends to a bounded operator L? — L2

(2) There exists a standard kernel K such that for every f e L¥(R"),

Tf(z) = / K(e.9)f(y) dy ac.

on (Supp f)°.
If T satisfies all properties above except for (1), then we say that 7 is associated with a
standard kernel K.

If T is a CZO, then we denote

(7.9) |Tlcz == T2 r2 + C(K)

We note that if (1) holds, then by a density argument we only needs to check (2) for a dense
subclass of LY, e.g. CL(R").

The following property of a Calderén-Zygmund Operator will be useful. Let’s call it (H):
For Q < R", a € L*(R™) such that Supp a < @, we have

(7.10) /]Ta\ dz < Clal 1|0
Q
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The property (H) follows from L? boundedness of T and Holder’s inequality, since

/ |Tal| dx < @\% (/ | Tal? dx)
Q Q
< C|Q|2 (/ |al? dx)
Q

< ClQllaf =

We now state our main theorem on Calderén-Zygmund operators.

Theorem 7.11. Let T be associated with a standard kernel. The following are equivalent:

(1) T satisfies (H).
(2) T is bounded H“* to L.
(8) T is bounded L to BMO.

Partial Proof. A complete proof can be found in Chapter 4 of [§]. Here we provide a proof
of how (1) implies (3). Suppose a € L®. Let Q = R? be a cube, and z, be the center of Q.
Then we decompose

azal—l—ag::a-la—i—a-l@c

First we use (H) to obtain

1/ 1
L (e < X / Tay| < Cla] =
@l Jo Al Jg

Since () is arbitrary and C' is independent of (), we have
1
foul = supint 2 [ o 3l < Cllalu
' Qo £ 1QlJq
Now we study ay. By Proposition [7.4] we have

|%|/Q|Ta2 — Tay(xo)| < |712|/Q . K (z,y) — K(z,20)||ay)| dydz

showing that ay is in BMO if we reason as above. Hence a € BM O, as desired. 0J

Remark 7.12. The proof above actually shows that 7" is bounded L* — BMO. Of course,
one has to make sense of how to define 7" on L* functions that don’t necessarily vanish at
infinity. Details can be found in [2].

The above theorem together with the interpolation theorem give the following
powerful implication about Calderén-Zygmund operators. Note that if we use the interpo-
lation mentioned in Remark , we immediately get the result below.

Corollary 7.13. Suppose T is a Calderon-Zygmund operator. Then T is bounded on LP for
1 <p< 0.
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Proof. By Theorem [6.§ and Theorem [7.11] we have T" bounded on L? for 2 < p < c0. Now
suppose 1 < ¢ < 2 and ¢’ be defined such that }D + % = 1. For f € L9, note that

(7.14) ITfle = ” Hinf 1/g($)Tf(:v) dr = H Hinf 1/T*g(x)f(x) dx
9l o= 9l o=
The adjoint T™ is also a Calderon-Zygmund operator, associated with standard kernel
K*(z,y) = K(y, )
so Holder’s inequality gives

(714) < Collglo 1 f e < Coll £l Lo
as desired. 0

Remark 7.15. All the work above, in particular, proves that the Hilbert transform is bounded
on LP for 1 < p < o0. One can also prove boundedness of Hilbert transform on L? for
1 < p < 2 using Marcinkiewicz interpolation theorem, and then get to 2 < p < o using a
duality argument.

8. LITTLEWOOD-PALEY THEORY

We begin by constructing a dyadic partition of unity. Let ¢ : RY — [0, 1] be such that
pe CF and

(2) = 1 |z] <14
A=V 0 | > 1.42

and we define ¢(x) = p(x) — p(2x). For N € 2%, we define 1 (x) = ¢(z/N). Then we notice

that
Z Un(z) =1

Ne2Z
for all z # 0.

Definition 8.1. Let f € §(R"). The Littlewood-Paley projection to frequencies || ~ N is
given by

Py f(&) = f(&)dn(8)
or equivalently
We also define
or equivalently

Moreover, we define

and define

Remark 8.2. The name “projection” can be slightly misleading, since actually P% # Py.
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Theorem 8.3 (Mikhlin Multiplier Theorem). Let m : RN\{0} — C be such that |[V*m(¢)| <
€|7F uniformly for |€] # 0 and 0 < k < d +2. Then

f=m(D)f
1s bounded on LP for 1 < p < c0.

The proof is basically use Littlewood-Paley decomposition to write m = Zj m;, where
each m; is easy to handle. Using Calderén-Zygmund theory, we can show L? boundedness
of m;(D) with nice enough operator norm, and then we can sum in j to get L” boundedness
of m.

Theorem 8.4 (Bernstein Inequalities). Let s > 0 and 1 < p < ¢ < 0. For simplicity of
notation, we write LP for LP(RY). We have the following inequalities:

(1) [P<n fllor Spsa N7V Pon fllLe-
(2) |P<n|VIfllie Spsa N[ P<n f]Lo-
(3) | PNIVI=f e ~psa N=*[ Py fe-

dd
(4) |P<n flre < ]i;dq||P<Nf\|Lp-
(5) |Pnflpa < N»"a||Pyf] o

We also have a characterization of the Sobolev norms:
Proposition 8.5. For fe &,
(D) 1l ~ (Svea NP f122) " = [N°1 P e
(2) 1l ~ 1Paafllie + (Syor NI P f13) "
Proposition 8.6 (Product Estimate). If f, g € S(RY) and a,b > 0, then the following holds:

VI £IV gl 2 ay < [ fllraseqaylglre + [ Flrelglmasome

Proof. The proof of these product estimates are all of the same spirit, so what we are doing
here may generalize to other product-type estimates. We decompose

VIV = (ZPer“f) (ZPM\vrbg>

(P |V[*f)(Pul|V]*9)

hd

S

(Peut[VI*F)(PulV["g) + (Pord VI* F)(Pur |V [g)

= =

We shall only show that

D U(Peut| VI ) (Pu|V|°g)

M

S [fle=lglaass

L2

since the proof that

2 (Poul VI ) (Pur|V|g)

M

S lglze [ f s
2

is analogous.
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We want to look at

P ((P<u|V[*f)(Pu|V]°9))
(8.7) = Pic ((Peass|VI*F)(PulVI*9)) + Prc ((Ponr<<n|VI* ) (Pat|V['9))
= A+ B
Note that the Fourier support of (P<ar/s| V| f)(Pan|V|%g) is on within the annulus {M /16 <

€] < 4M}, so A is non-zero only when M /32 < K < 8M. Moreover, we can see that B is
also non-zero only when K ~ M. Hence

P SPaulVI Pl

= > Pi((PenssVI“F)(PulVI°9)) + Pic ((Pejnr<en|VI*F) (P |V |"9))

M~K

and thus

We define ¢(57) and 1(57) to be the multiplier functions used in P<j; and Py, and also

Pi( AP T )PulVT) )

M
< X 1P ((ParigsI VI S)(Putl VI°9)) 122 + |1 Prc (Pejpr<ant| V1 1) (Pat |V ['9)) 2

M~K

L2

pal8) = [€0(),  u(€) = IE"B(€)

Cam(§) == 0a§/M), ym(§) :== Pp(§/M)

so that

(Pe |V F) (P |V [Pg) — 1 (M“b«oa,M )W §>)
M D)W+ 9)
(g » M g)

Then by Young’s convolution inequality and the fact that i 5 is supported on {|{| ~ M},
we have

| Prc (P<ar V| F)(Prr |V [P9)) | o | (P V[ £) (P | VP 9)] .
< e MO by ap # g 12
< M| £l po | Parg 12

and similar argument gives

| Prc ((Psjar<<aa VI S) (Pl V1°9)) 12 € M| fll= | Parg] e
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Therefore,
2 2
PV el = 3| pe( S pulvr)
M L> K M L?
S fle D) Dy M Pugl7
K M~K
S [l Y M Paggl7
M
< [ fllze gl rase
as desired. 0
9. PSEUDODIFFERENTIAL OPERATORS
Pseudodifferential operators refer to operators of the form
,f(0) = | al, ) fle)e ag
where a is called the symbol of the operator.
Example 9.1. (1) The simplest case is when a = 1. In this case T, is the inverse Fourier

transform of f, meaning that formally it is just the identity.

(2) Suppose a = . Then formally T, f(z) = xf(z).

(3) Suppose a = . Then since multiplying in the frequency space corresponds to differ-
entiating in the physical space, T, f(z) ~ f'(x).

Definition 9.2. We say T, is a pseudodifferential operator of order m if
070 a2, €)] < Cays(L + €)™
for any «a, 8 € N. We denote the collection of such operators by S™.

We first present the following useful lemma, which exemplifies what is called the TT*
argument.

Lemma 9.3 (Cotlar-Stein Lemma). Let H be a Hilbert space and {T;}ez a sequence of
bounded operators on H with adjoints {T}};ez. Let {a(j)}jez be a sequence of non-negative
numbers such that

| T+ 7T < ali = 5)
Then for all integers n and m, n < m, we have

Proof. First of alllet S := " T;. Then S is a bounded operator on H. By the TT* theorem,
we have

0

<> a(i)'?

—00

(9.4) IS = 1(S55*)k |2
Meanwhile, we expand to obtain
(SS*) = > TTh. T T,

N<EJ1,0J2k <M
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On the one hand we have
[(SS*)* ) < N5 T |- | Ton T3i]| < ay = 2)---a(Gon—1 = Jow)
and on the other hand we have
[(SS*) M < 1T T3 T |- | T Tora [ | T3 < a(0)2a(a = Ja)---alan—2 — fon—1)a(0)'/?
So taking geometric mean of the right hand sides above we get

(S5 <a@ S ali — o) alie — )"l — ju)"”

NG, J2k <M

< a(0)}(m—n+1) (ia(@')m)%l

so by (11.3) we have

i =T
15| < a(0)1/4k(m —n+ 1)1/2k(2 a(i)1/2>
—o0
and sending £ — o0 we get
m 00]
IS = | DT < >Ja(i)?
i=n —00
as desired. O

We have the following application of the Cotlar’s lemma to Hilbert transform:

Example 9.5. For f € L?(R) we define the truncated Hilbert transform

T f(x) = /2 i f(:r:t— D

We note that

| fla— 1
mwis P L
4
g Wl
< A4AM f(x)

where M is the Hardy-Littlewood maximal operator. Thus 7} is bounded on L?. Using
Cotlar’s lemma, we can show that any finite sum of the 7}’s are uniformly bounded.

Theorem 9.6 (Calderén-Vaillancourt). Let T, be a pseudodifferential operator of order 0.
Then T, extends to a bounded operator on L?.

A proof can be found on [6].
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10. T(1) THEOREM

10.1. Carleson’s Measure. The T'(1) theorem was originally published in [I]. Here we
follow the proof of T'(1) Theorem in [5], for which some preliminaries on Carleson’s measures
are needed.

Definition 10.1 (Carleson’s Measure). A positive measure v on R%™ is a Carleson’s measure
if for every cube () < R", we have

(@ x (0,1(Q))) < €l

where [(Q) is the side length of ). The infimum over all possible values of C is called the
Carleson’s constant and is usually denoted |v|.

Given an open subset £ < R", we let
E:={(z,t)e R B(x,t) « E}
Then we have the following lemma.
Lemma 10.2. If v is a Carleson’s measure in R™™ and E < R™ is open, then
v(E) < C|v||E|
Proof. The proof is done using Calderon-Zygmund decomposition. U

Theorem 10.3. Let ¢ be a bounded, integrable function which is positive, radial, and de-
creasing. Fort > 0, let ¢,(x) = t™"¢(t"'x). Then a measure v is a Carleson’s measure if
and only if for every p, 1 < p < o0,

| e s@p st <c [ 1p@p i

The constant C' is comparable to |v|.

Here is another important theorem that connects Carleson’s measure to BMO functions.

Theorem 10.4. Let b € BMO and ¢ € S(R™) be such that [ = 0. Then the measure v
defined by

dxdt
dv = [b* ()| ——
is a Carleson’s measure such that |v| < ||b|2.

Proof. O

Corollary 10.5. Let ¢ and 1 be as in the previous two theorems, and b€ BMQO. Then for
1 < p < oo we have

dzd
[ e s@P 0 w@ St <c [ 1@l i
R1+1 Rn

Proof. The proof is essentially the previous two theorems put together. O
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10.2. T(1) Theorem and Applications. In order to show that an operator is a Calderén-
Zygmund operator, a key assumption to verify is L? boundedness. The T'(1) theorem provides
a criterion, saying that as long as the operator and its adjoint sends the constant function
1 to BMO and satisfies some other reasonable assumptions, then it is actually bounded on
L?. Of course, some work is needed to make everything rigorous.

To simplify the presentation, we state everything in the 1-dimensional domain R.

Definition 10.6 (Weak Boundedness Property, as in [3]). Given a function f, we define

=31 ()

We say that T sastisfies the weak boundedness property (WBP), if there exists ¢ € CP(R)
radially symmetric and its derivative ¢ = ¢', such that for some ¢ > 0,

(07) KT, 001 < e KTM4001 € e for vy 0
For convenience, we fix the notation
1 1
pe(x) = (1 P

Theorem 10.8. Let T : & — &' be a linear operator. If

(1) T sastisfies the weak boundedness property (WBP);
(2) T(1) € BMO;
(3) T*(1) € BMO;

Then T is bounded L* — L*.

We have several remarks on the 7'(1) Theorem before we start the proof. First of all we
need to make clear what does 7'(1) € BMO mean. One way to formulate it is the following:
we say T'(1) € BMO if there exists a BMO function b such that

(T1),9)=<b,9)

for all g € C'F with mean 0.
The next remark is given by the following proposition.

Proposition 10.9. Suppose T is a singular integral operator associated with an anti-symmetric
kernel K, i.e.

Tf(x) = p-v'/ K(x,y)f(y) dy = lim K(z,y)f(y) dy

lz—y|>e &0 |lz—y|>e
for some K(z,y) = —K(y,z) and f € CP(R), then T automatically satisfies WBP. More-
over, T is bounded on L? if and only if T(1) e BMO.

Proof. Let t > 0. Suppose |z — y| > 3t. Then since ¢¥ has mean 0, we can write

AT // (K (2, 0) — K (2, 2)) @ (205 () dudz

// |x 5 ol (2)] - [y (w)] dudz

I:E - yl2
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where the first inequality follows from standard estimates and triangular inequality. Note

that
t

|z — yl?

where we have the last inequality because |*¥| > 3.
Now suppose |z — y| < 3t. Using antisymmetry, we may write

(TyE, 8 = po. // K (2, u) (S0 ()08 () — @ (u)(2)) dudz

By mean value theorem, it is easy to verify that

(10.10)
|07 ()01 () — & (W) ()] < [0f (2)1 () — &f (W) ()| + | (w)ihy (u) — ¢f (u) ¥y (2)]
< (I e 1002 oo+ 1) oo 67 oo ) e — 2]
ju — 2|
13

Then we can use standard estimates to get

vty < [

~

L Ju—z dudz

u—z 3

where
A= {(u, 2) o7 (2)¥f (u) — ¢ (w)¥y (2)| > 0}

Since ¢ is compactly supported, we have |u—z| < t, |z —y| < ¢. Since |z —y| < 3¢, we know
that |u — z| < t. Tt follows that |A] < t?, and thus

. 1
T <

Since |x — y| < 3t, note that

S
N
~ | =

So we get the desired result. O

Proof of T(1) Theorem. Let ¢ and 1) be as above. We denote P,f = ¢ * f and Qi f = ¢y = f,
and since P, is an approximation of identity, for f € &, we write
1/e
Tf = lim P’TP}f = lim Oy(PPTP2f) dt
To show that the first equality holds, we claim that if 7,, > T in 8" and f,, — f € &, then
T.f.n — Tf. This claim is a corollary of the following Banach-Steinhaus theorem in Frechét
space.

Lemma 10.11 (Banach-Steinhaus). Let X be a Frechét space and Y be a normed space,
and let {pata be a family of continuous linear maps X — Y. If sup, |¢(x)| < oo for every
x € X, then {¢a}a is a equicontinuous family.
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For convenience, we abuse notation by writing

0 1/e
/ (PPTPR2f) dt =lim [ 0(PPTEf) dt
0 e~V Je

and using chain rule and linearity of T', we may write

/ O(PPTPf) dt = / (to,P?)(TP~f) %+ / P>T(t0: P? f)%
0 0 0

The second integrand on the right hand side is the conjugate of the first, so we only study
the first integral. Taking Fourier transform in space, we have

10, P2g = 2t6(t€)¢d (19)9(€)
= 2 ()b (£6)§(€)
= 201,Qu9

where ¢y (z) = z¢(z) and Q1.9 = Y14 * g. Thus the integral we are interested in can be
rewritten as

dt
2 [T Quarrisf =2 [ aunnsd
so we have

Lig = QT Pg = 1y + [T (¢ * g)]
/wtx— (0 9)(y) dy

//T*wt Y)#!(2)g(2) dzdy
- [ [rewnme) a)ate) i

- / (T E), 6259(2) d

For convenience, we define
b(z,2) == (TH(Yr), ¢7)
Observe that the assumptions of T(1) theorem give us
L(z,2) < pi(x — 2)
and that
Li(1) = <T*(¢)), 1) = G, T(1)) =ty x b
Now, we decompose

/ QuLArY - / QuLPf Y / QuelLePef —~ L()P)

= [ Qultbe w01 + B )
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and we begin by estimating E(f). By duality, assume g € & satisfies |g|[zz = 1, then

(9. B(f)) = / / QuawAf - Lpn e

([ [ewor™) ([ [

By Plancherel,
x dtdz dédt
[ eu@r®E = [ [ meaors
0

With a change of variable ¢ = t£, the above equation becomes

@R ( [ BorT) de < lali -1

At the mean time, Minkowski integral inequality gives
*dtda

[ [ [uen@sw - rowia) 4

< [ [ ows - pnar
[ [[intwPRs) - Pt + e

* ~ - ~ o dudéd
- [ [ mtoride e 1P frop

< (/@(@W@) 1/2(/Oooy¢( %9~ 1dt) (/\f )| df)

If we fix a § < ¢, the above integral is

L(z,y)(Pr(y) — Pof(z))dy

2 dtdx
t

< 12

as desired. For the term
*© dt
| @t g

we use a duality argument as above, and appeal to Corollary to get that it is bounded
by an absolute constant. Now the proof is complete. 0

As an application to T'(1) theorem, we study certain Cauchy integral operators. Suppose
we have a Lipshitz graph I' := {(x, A(z)) : * € R}. For convenience, we denote z(z) :=
x + 1A(x), and consider the operator

Z(y)

Tf(x):= P-U-/mf(y) dy

Proposition 10.12. There is a sufficiently small constant ¢ > 0 such that T is bounded on
L*(R) as long as z is Lipschitz with |A"| = < c.
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Proof. We define the operator
fw) fw) p

Of(a’j) = p.v. / mdy =p-v. / T —1y+ Z(A(x) - A(y)) /

and are done with the proof if we can show C'is bounded on L?. To see this, assume for now
that C' is bounded on L? then T'f = C(fZz') and thus

ITfe = |C(f2 )2 < | f2" |12 < [ f]12

where we have the last inequality since ||2’| 1= is bounded.

Now our task is reduced to showing boundedness of C' on L?, which we establish using
the T'(1) theorem. Since the kernel of C is antisymmetric, we only need to show that
C(1) e BMO.

Direct calculation gives

Ca) =Z(—i)”p.v./ fy) (A(x)—A(y))"dy

=Yy r—y

n

assuming that |A’[|~ is small enough. We denote

i [ L5 (8=,

and claim that C, (1) = C,,_1(A’). Integrating by parts at least formally, we have
Alx)— A "
- [ (AAwY L,
rT—vy r—y
-+ [w - awyra——
= Y Oy (x

n —y)"

Alz) — A(y)\" 1 A
_ / < (z) (y>> W 4,
x—y x—y
= nfl(A/)
which establishes the claim. One just needs to be slightly more careful for a rigorous deduc-

tion, and we do not show all the details here.
We want to show that there exists some C > 0 such that

(10.13) ICR ()] < CHFH A
uniformly in k, and we achieve it by induction. For the base case, note that
Ci1(1) = Cy(A") =mH(A")

dy

and thus
[CL(D)]+ < C A1
in view of Theorem and Remark Now, suppose ((10.13) is true for k. We have

|Chsilremprro < Cr(Calk + | AL + |Cill r2re)

if we look at the proof we had for Theorem and keep track of the dependence on
constants. Here ||Cg|lp2r2 < o0 by induction hypothesis, antisymmetry of the kernel of
Ck, and the T'(1) theorem. Keeping track of dependence on constants in the proof of T(1)
Theorem, we get

|Cillzere < CoCE Y A
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Choosing C sufficiently large with respect to C1, Cs, C3, Cy and independent of k, we get
|Cri1lre—BMO < CHQHA/HLOO
and the conclusion follows from induction. Therefore,
[C)]e < X ICM]w < D CHH A
k k
which is finite if |A||~ is sufficiently small. Now the proof is complete. O

11. CAUCHY INTEGRAL AND HILBERT TRANSFORM

In this section, we explore the connection between Cauchy integral and Hilbert transform.
This connection and things of similar spirit are used in the study of free boundary problems.
We assume 7 : R — R is a Lipschitz function such that

lim n(z) = hrf n(x) =0
and let
Q:={(z,y):zeR, y<n(a)}
and
Y =00 = {(z,n(x)): x e R}

Suppose z : R — C is a parametrization Y, we define the Hilbert transform associated with
Y to be

ni(@) = = po. [ S a5 i L F@)(5)

=0T Jig-apse 2(a) = 2(6)
The goal of this section is to prove the following proposition that characterizes holomorphic
functions on €2(t).
Proposition 11.1. Let g € LP for some 1 < p < oo. Then

(1) g is a boundary value of a holomorphic function G such that G(z) — 0 as |z| — o if
and only if Hg = g.

(2) 3(I+9)g is the boundary value of a holomorphic function & on Q such that &(z) — 0
as |z| — 0.

(3) H1 = 0.
Let f: 3 — C be induced by g such that
f(z(B)) == 9(B)
G(z) = %/R—f(j(_ﬁ)z)(zﬁ()ﬁ) ap= L [ 19 4

o Je 2z —C

We also define

on ).
Henceforth, we suppose z is an arclength parametrization of X such that there are constants
¢, C' > 0 such that
() — 2(B)

——5 | <C

c <

for a, B € R.
Now, we state and prove several preparatory lemmas before we begin the proof of the
theorem.
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Lemma 11.2 (Plemelj Formula). Let g € C¥(R). For any o € R, we have
1 1
(11.3) lirr(l)G(z) = ig(oz) + ifjg(a)

where in the limit we have z € ().

Proof of Lemma. We begin with the case that g € CZ(R). Then there are some 31 < 5 € R
such that g is supported in (5, 82). We define

={2(8) : B1 < B < fo}

1[I0 g LSO,
T Js 2 —(C 2mi rz—=¢
Now, we consider an extension of f such that f(z) is constant on {Re(z) = a} for every
aceR, and abusing notations a little bit we still write this extended function as f(z). Note
that f(z) is Llpschltz Then we can write

/f (— d“/rc— 4 = /fc— d“log@:j)

where the log function is defined on C — {ia : a > 0}. Now, since f is Lipschitz, the first
summand above behaves well if we send z — z(a) by dominated convergence, and the second
summand also behaves well if we send z — z(a) by continuity of log on its domain.
Having shown that the limit on the left hand side of exists, we compute that it

equals the right hand side. In particular, it suffices to show

lim G(z(a) —ieZ' (o)) = 1g(oz) + 1.69(04)

e—0 2 2
Note that changing variables 8 = « + €7, we have

so that

/ 9(6)7'(P) 45 - eg(a+ev)z(a + &9)
g 2(@) —ie(a) — z(P) g 2(@) —ie(a) — z(a + €7)
At the mean time, we also have
9B . [ egla+endla+ey)
/|5a>€ z(a) — z(B) ap iz 2(a) = 2(a+ey) d

Therefore,
2miG(z(a) — ie2' () — miHg(«

N 9(B)7'(B) 9(B)Z'(B)
_/R z(a) —iez! () — dﬁ / foalse 2(Q) — z(ﬁ) dp

:/ eg(a+ev)z (04 + 57) B / 5g(a +ev)2 (a + €7)
r 2(a) — g2/ (@) — z(a + €7) 1 2(a) = z(a+ey)

2o+ ey) 1 2'(a+e7) >
= [ gla+¢ey < - 1 u ) dy
/R ( ) 7%’&&*57) _ izl(a) v 2(a)— ;(yaJrs»y) {lv[=1}

Sending ¢ — 0 and applying dominated convergence theorem, which is applicable since z
parametrizes a Lipschitz curve, the above equation goes to

1 1
J— ——1 d pr— )
g(a)/ﬁwJﬂ. Mz mig(a)
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which means
270 hH(l) G(z(a) —ic () — miHg(a) = mig(a)

so we have the desired conclusion g € CF(R). O

Having shown this lemma, we want to extend our result from C*(R) to LP(R), where

1 < p < . We define
1 1
K -

and have the following theorem by Calderon.

Theorem 11.4 (Calderon, David). A singular integral operator associated with Ky, is a
Calderon-Zygmund operator.

Since 2’ is bounded above, the above theorem immediately gives us the following important
corollary, which is worth being called a theorem.

Theorem 11.5. $) is a bounded operator LP — LP, where 1 < p < o0.

At this point, we notice that we are done if we can show that for any g € LP(R), the
(non-tangential) limit
. .1 [g(8)YB)
11.6 lim G(z):= lim —/— d
( ) z—z(a) ( ) z—z(a) 271 R 2 — Z(B) B

exists for every a € R, since we know by Theorem that the right hand side of
is well-behaved if the input is in LP(R). We wish to apply the standard density argument
in harmonic analysis, so we need to define a non-tangential maximal function related to the
convergence in (|11.6)).

For simplicity of presentation, we shall do the case where the Lipschitz curve X is just the
real line R, since the proof for general case is similar. Henceforth z(z) = x for every x € R,
and we denote

1 f(B)
H =—pu. | —=d
fla) = — pw /&_ﬁ 8
We first define several things that shall be used soon.

Definition 11.7. For ¢ > 0, we define the Poisson kernel on R? as

t
P(x)= ——
) x? + 12
and the conjugate Poisson kernel on R? as
x
Qi(z) = PR

Remark 11.8. We have this terminology since P(z) + iQ¢(x) is a holomorphic function on
the lower half plane, with respect to the variable z = = — it.

™

Definition 11.9 (Non-tangential Maximal Functions). For o € R and 0 < v < 7, we first
define the cone
Iy(a) :={(z,—t) ;2 eR,t >0, |[x —al-tan(y) < t}

[54]

Then we define

M f(«) := sup
Ly(a)
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We also define the auxiliary maximal functions

Nif(a):= sup [P« f(z)|

(2,~t)els (o)

Naf(a):= sup [Q+ f(2)]

(2,~1)eT ()
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Our goal is to show that M is a bounded operator LP — LP for 1 < p < oo, and we will

establish this by first showing that N; and N, are both bounded operator on LP — LP.

Proposition 11.10. N; defines a bounded operator LP — LP, for any 1 < p < o0.

A discussion of Proposition |11.10] can be found in [2]. The key ingredient to the proof
is the following classical lemma in harmonic analysis. The proof of the lemma can also be

found in [2].

Lemma 11.11. Suppose ¢ is dominated by a positive integrable radially decreasing function
. Then there is some constant C' > 0 only depending on 1 such that for any f € LP we

have

sup |6+ f(2)] < Cf*(2)

where f* is the Hardy-Littlewood maximal function of f and

¢xx>;:%¢<§>

We now establish the boundedness of Ns.

Proposition 11.12. N, defines a bounded operator LP — L, for any 1 < p < o0.

Proof. We first assume f € §(R). In [2] the author directly computes that

(11.13) Qi [ = Py = (Hf)

for every t > 0 using Fourier transform. Note that this implies that (11.13)) holds for every
f € L?, since H is bounded on L?, convolution by P, is bounded on L?, and also Q= f,, — Q= f
pointwisely for any sequence f,, — f in LP by Holder’s inequality. Then for any ¢t > 0, a € R,

0<v<m/2and (z,—t) e ['\(«a),

Qi+ f(x) = P+ (Hf)(2)
and thus
Nof(z) < Ni(Hf)(z)

Then L? boundedness of both N; and H gives us the desired result.

Now we consider the operator M. Note that for « — it in ',

98 | | [ eBE i)
4x—5—ud5 4
|

9(B)B
<| Lot
= Q¢ = f(z)| + [P = f()]
< Nif(a) + Nof(a)

+

(@),

g(B)t

ap
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So we have

M f(a) < Nif(a) + Naof(a)

which leads to our desired result.

Proposition 11.14 (Boundedness of Non-tangential maximal function). M defines a bounded
operator LP — LP, for any 1 < p < c0.

Now our proof is complete.

REFERENCES

Guy David and Jean-Lin Journé. A Boundedness Criterion for Generalized Calderén-Zygmund Operators.
Annals of Mathematics, 120(2): 371-397, 1984.

Javier Duoandikoetxea. Fourier Analysis. American Mathematical Society, 2001.

Lawrence C. Evans. Partial Differential Equations, Second Edition. American Mathematical Society,
2010.

Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. John Wiley & Sons Inc.,
1999

Elias Stein. Beijing Lectures in Harmonic Analysis. (AM-112), Volume 112. Princeton University Press,
1987.

Elias Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Prince-
ton University Press, 1993.

Terence Tao. Nonlinear Dispersive Equations, Local and Global Analysis. American Mathematical Society,
2006.

Jean-Lin Journé. Calderon-Zygmund Operators, Pseudodifferential Operators, and the Cauchy Integral of
Calderon. Springer-Verlag Berlin Heidelberg New York Tokyo, 1983.



	1. Two Fundamental Interpolation Theorems
	2. Maximal Functions
	3. BMO Spaces
	4. Ap Weights
	5. Hardy Spaces and Relation with BMO
	6. An Interpolation Theorem for BMO
	7. Calderon-Zygmund Operators
	8. Littlewood-Paley Theory
	9. Pseudodifferential Operators
	10. T(1) Theorem
	10.1. Carleson's Measure
	10.2. T(1) Theorem and Applications

	11. Cauchy Integral and Hilbert Transform
	References

