
NOTES ON PARTIAL DIFFERENTIAL EQUATIONS

ZHENGJUN LIANG

Abstract. These notes record some foundational knowledge for PDE research and are
evolving over time. They are supposed to be high-level sketches, so intuitions and main
ideas are emphasized, and sometimes only references are given for detailed proofs. At the
meantime, examples are computed, and proofs not easily found in literature are supplied.
(Last Updated: Jan 8, 2024.)

Contents

1. Preliminaries 2
2. Gronwall Inequality and Bootstrap Argument 2
3. Laplace Equation 3
3.1. Fundamental Solution 3
3.2. Maximum Principle 4
3.3. Uniqueness 4
3.4. Green’s Representation Formula 5
4. Heat Equation 5
4.1. Fundamental Solution 5
4.2. Maximum Principle 6
4.3. Duhammel’s Formula 7
4.4. Uniqueness 7
5. Wave Equation 7
5.1. Solution in 1D 8
5.2. Solution in Higher Dimensions 8
5.3. Energy Methods 9
6. Sobolev Spaces and Inequalities 10
7. Linear Elliptic Equations 11
7.1. Maximum Principles 13
7.2. Heuristic Discussion of Regularity 14
8. Linear Parabolic Equations 14
9. Linear Hyperbolic Equations 16
10. Energy Estimates for Water Wave Equations 17
References 18

1



2 ZHENGJUN LIANG

1. Preliminaries

The following integration by parts formula is used frequently. Here U is open.

(1.1)

ˆ
U

u divpV q “

ˆ
BU

uV ¨ n ´

ˆ
U

∇u ¨ V

Another thing that we use often is the weighted Cauchy-Schwarz inequality

(1.2) 2ab ď
a2

ε
` εb2

here ε ą 0.

2. Gronwall Inequality and Bootstrap Argument

Theorem 2.1 (Gronwall’s Inequality, Differential Form). Let u : rt0, t1s Ñ R` be absolutely
continuous and non-negative, and suppose u obeys the differential inequality

(2.2) Btuptq ď Bptquptq ` Cptq

for a.e. t P rt0, t1s, where B : rt0, t1s Ñ R` is continuous and non-negative. Then we have

(2.3) uptq ď exp

ˆ ˆ t

t0

Bpsq ds

˙ˆ

upt0q `

ˆ t

t0

Cpsq ds

˙

for all t P rt0, t1s.

Theorem 2.4 (Gronwall’s Inequality, Integral Form). Let u : rt0, t1s Ñ R` be absolutely
continuous and non-negative, and suppose u obeys the integral inequality

(2.5) uptq ď A `

ˆ t

t0

Bpsqupsq ds `

ˆ t

t0

Cpsq ds

for all t P rt0, t1s, where B : rt0, t1s Ñ R` is continuous and non-negative. Then we have

(2.6) uptq ď exp

ˆ ˆ t

t0

Bpsq ds

˙ˆ

upt0q `

ˆ t

t0

Cpsq ds

˙

for all t P rt0, t1s.

Theorem 2.7 (Abstract Bootstrap Principle). Let r0, T s be a closed (time) interval. Hptq, Cptq
are two statements that we heuristically understand as ”hypothesis” and ”conclusion”. Sup-
pose

(1) (Hypothesis implies conclusion) If Hptq is true, then Cptq is true.
(2) (Conclusion stronger than hypothesis) If Cpt0q is true, then there is an interval U

containing t0 such that Hptq is true for t P U .
(3) (Conclusion is closed) If tn is a sequence in r0, T s converging to t, Cptnq is true for

every n, then Cptq is true.
(4) (Hypothesis is non-vacuous) Hptq is true for some t P r0, T s.

Then Cptq is true for all t P r0, T s.

The proof is a standard connectivity argument (as can be found in [6]), namely showing
that the set of t on which Cptq is true is non-empty, open, and closed in r0, T s, so it must
be r0, T s itself.



NOTES ON PARTIAL DIFFERENTIAL EQUATIONS 3

3. Laplace Equation

We study the Laplace equation

(3.1) ´ ∆u “ 0

and Poisson’s equation

(3.2) ´ ∆u “ f

where u and f are nice enough functions. When we solve the equations on a domain U , it is
common to assume that u P C2pUq X CpUq and f P CpUq.

Definition 3.3 (Harmonic Function, First Version). A function u P C2pUq X CpUq that
solves the Laplace equation (3.1) is called a harmonic function.

3.1. Fundamental Solution. We begin with an attempt to find a radially symmetric so-
lution u of the Laplace equation (3.1) in U “ Rn, i.e.

upxq “ vprq

where r “ |x|. Direct computation yields

vprq “

"

b log r ` c n “ 2
b

rn´2 ` c n ě 3

This motivates us to define

Definition 3.4 (Fundamental Solution of Laplace Equation). The function

Φpxq “

"

´ 1
2π

log |x| n “ 2
1

npn´2qωpnq

1
|x|n´2 n ě 3

defined for x P Rn, x ‰ 0, is called the fundamental solution of Laplace equation. Here ωpnq

refers to the volume of the unit ball in Rn.

The fundamental solution can also be found through Fourier transform. At least formally,
we can take Fourier transform of the equation

∆u “ δ

to obtain
4π|ξ|

2
pupξq “ 1

and thus

pupξq “
1

4π|ξ|2

Now taking inverse Fourier transform we get the desired result, at least formally. Note that
we have the estimates

|∇upxq| ď
C

|x|n´1
, |D2upxq| ď

C

|x|n

The main reason we study the fundamental solution is that it will help us solve the
Poisson’s equation, as seen in the following result.

Theorem 3.5 (Solving Poisson’s Equation). Let f P C2
c pRnq, and we define

upxq :“ Φ ˚ fpxq :“

ˆ
Rn

Φpx ´ yqfpyq dy

Then u P C2pRnq and ´∆u “ f in Rn.
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We discuss heuristically what happens. We can compute that “∆Φpxq “ δ”, and thus

“∆pΦ ˚ fqpxq “ p∆Φ ˚ fqpxq “ pδ ˚ fqpxq “ fpxq”

3.2. Maximum Principle. Harmonic functions enjoys a mean value property, which
says that the average of a harmonic function u over a sphere BBpx, rq or over the ball Bpx, rq
is equal to upxq, provided that Bpx, rq Ă U . The statement is

Theorem 3.6 (Mean-Value Formula). A function u P C2pUq is harmonic if and only if

upxq “
1

|BBpx, rq|

ˆ
BBpx,rq

u dS “
1

|Bpx, rq|

ˆ
Bpx,rq

u dy

for each ball Bpx, rq Ă U .

This mean value property gives rise to remarkable consequences, such as the maximum
principle.

Theorem 3.7 (Strong Maximum Principle). Suppose u P C2pUq XCpUq is harmonic within
U . Then

max
U

u “ max
BU

u

Furthermore, if U is connected and there is a point x0 P U such that

upx0q “ max
U

u

then u is constant within U .

The proof of the strong maximum principle is a standard connectivity argument using the
mean value formula.

Theorem 3.8 (Regularity). If u P CpUq satisfies the mean value property for each Bpx, rq Ă

U , then in fact u P C8pUq. In particular, harmonic functions are smooth.

To prove the theorem, one consider the standard mollification uε :“ u ˚ ηε in Uε :“ tx P

U : distpx, BUq ą εu, and show that in fact u ” uε on Uε.

Theorem 3.9 (Harnack Inequality). Let u be a non-negative harmonic function on U . For
each connected open set V ĂĂ U , there is a positive constant C, depending only on V , such
that

sup
V
u ď C inf

V
u

for all non-negative harmonic functions u in U .

The inequality asserts that the values of a non-negative harmonic function are all compa-
rable on U . The proof utilizes mean value property and compactness of V .

3.3. Uniqueness. Suppose f P CpUq with f “ g on BU . We can in fact show that solution
to the Poisson equation

∆u “ f on U, u “ g on BU

is unique. We present two different proofs, one by maximum principle and one by energy
method.

Let u, u1 be two such solutions. Then w :“ u ´ u1 satisfies

∆w “ 0 on U, w “ 0 on BU
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and it follows from the maximum principle that w ” 0 on U .
As for the energy method, we consider the energy

Epwq :“

ˆ
U

|∇w|
2 dx

and integration by parts gives

Epwq :“ ´

ˆ
U

∆w ¨ w dx “ 0

where the boundary term vanishes because w “ 0 on BU . Since ∇w is continuous, we must
actually have ∇w “ 0. Then we get w ” 0 noting that w “ 0 on BU .

3.4. Green’s Representation Formula. Assume now that U Ă Rn is open, bounded, and
BU is C1. We propose a general representation formula for the solution of Poisson’s equation

´∆u “ f in U

subject to the boundary condition

u “ g on BU

Definition 3.10. For x, y P U and x ‰ y, Green’s function for the region U is

Gpx, yq :“ Φpy ´ xq ´ ϕx
pyq

where Φ is the fundamental solution as defined above, and ϕx solves the boundary value
problem

"

∆ϕxpyq “ 0 in U
ϕxpyq “ Φpy ´ xq on BU

With the Green’s function defined, we have the following representation formula:

Theorem 3.11. If u P C2pUq solves the Poisson equation with boundary data as above, then

upxq “ ´

ˆ
BU

gpyq
BG

Bν
px, yq dSpyq `

ˆ
U

fpyqGpx, yq dy

for x P U .

4. Heat Equation

This section is devoted to study heat equation of the form

(4.1) Btu ´ ∆u “ f

which is the prototype of parabolic equations.

4.1. Fundamental Solution. As in the study of Laplace equation, we begin by looking for
a radially symmetric solution that behaves well under scaling. This motivates us to define
the following fundamental solution:

Definition 4.2 (Fundamental Solution of the Heat Equation). The function

Φpx, tq “
1

p4πtqn{2
e´|x|2{4t

is called the fundamental solution of the heat equation.
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The fundamental solution can also be found using Fourier transform. Formally taking
Fourier transform of the heat equation, we get

Btpupξ, tq ` 4π2
|ξ|

2
pupξ, tq “ 0

This is an ODE, of which

pupξ, tq “ exp
`

´ 4π2
|ξ|

2t
˘

is a solution. Taking inverse Fourier transform we obtain the fundamental solution up to
multiplication by a constant.

The constants as in the definition of the fundamental solution are chosen to satisfy the
following normalization:

Lemma 4.3. For each time t ą 0, ˆ
Rn

Φpx, tq dx “ 1

The reason we study the fundamental solution for the heat equation is that it will help us
solve the heat equation with a given initial data, as suggested by the following theorem:

Theorem 4.4. Let g P L8pRnq X CpRnq, and we define

upx, tq :“ Φ ˚ g “

ˆ
Rn

Φpx ´ y, tqgpyq dy

Then u P C8pRn ˆ p0,8qq, and u satisfies
"

Btu ´ ∆u “ 0 for x P Rn, t ą 0
limpx,tqÑpx0,0q upx, tq “ gpx0q for x0 P Rn

4.2. Maximum Principle.

Theorem 4.5 (Strong Maximum Principle). Assume u P C2pUT q X CpUT q is a solution to
the heat equation on UT . Then

(1) We have

max
UT

|u| “ max
ΓT

|u|

(2) Moreover, if

max
UT

|u| “ |upx0, t0q|

for some px0, t0q P UT , then u is in fact constant on UT .

A proof can be found in [4]. It utilizes a mean-value property for heat equations.
The strong maximum principle also exemplifies infinite speed of propagation, which is

a common feature of parabolic equations. More specifically, suppose we start with an initial
data up0q “ g ě 0, then as soon as t ą 0, uptq is everywhere strictly greater than 0 by
strong maximum principle. Of course, in the case of heat equation we can also see infinite
speed of propagation directly through the explicit solution formula given by the fundamental
solution, but the strong maximum principle holds in a more general setting.

Hyperbolic equations such as the wave equation have no such maximum principles, and
in contrast demonstrate finite speed of propagation, as seen in Theorem 5.7.
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4.3. Duhammel’s Formula. We now use Duhammel’s principle to solve the inhomoge-
neous problem

(4.6)

"

Btu ´ ∆u “ f in Rn ˆ p0,8q

up¨, 0q “ 0 on Rn ˆ tt “ 0u

where we assume f P C2
c pRnq for convenience. The trick is to define

upx, t; sq :“

ˆ
Rn

Φpx ´ y, t ´ sqfpy, sq dy

where s can be regarded as a parameter. Then upx, t; sq solves the initial value problem
"

Btup¨; sq ´ ∆up¨; sq “ 0 in Rn ˆ ps,8q

up¨; sq “ fp¨; sq on Rn

We let

upx, tq “

ˆ t

0

upx, t; sq ds “

ˆ t

0

1

p4πpt ´ sqqn{2

ˆ
Rn

exp

ˆ

´
|x ´ y|2

4pt ´ sq

˙

fpy, sq dyds

and one can verify that u actually solves the inhomogeneous problem. It is clear that
up¨, 0q “ 0. Moreover, for t ą 0,

∆u “

ˆ t

0

∆upx, t; sq ds “ 0

since Φ is harmonic for t ´ s ą 0, and

Btupx, tq “ lim
sÑt´

upx, t; sq “ fpx, tq

as desired.

4.4. Uniqueness. Suppose f “ CpUT q and g P CpUq. As for Laplace equation, the initial
value problem for the heat equation has a unique classical solution. On the one hand, this
is an easy consequence of the strong maximum principle. On the other hand, one can use
energy method to prove that u ” 0 if f and g are both identically zero. Consider the energy

Eptq :“
1

2
}uptq}

2
L2pUq

Then we have
dE

dt
“

ˆ
U

Btu ¨ u “

ˆ
U

u∆u “ ´

ˆ
U

|∇u|
2

ď 0

The last equality follows from integration by parts, and boundary value vanishes because we
assume u ” 0 on BU . On the other hand, up0q “ g ” 0, so Ep0q “ 0, and thus Eptq “ 0
for all t P r0, T s since Eptq is always non-negative. Hence ∇u ” 0 and u ” 0 on UT by zero
boundary conditions.

5. Wave Equation

We now consider the wave equation

(5.1) utt ´ ∆u “ 0

with initial data
up¨, 0q “ g, utp¨, 0q “ h

At times we will use the D’Alembertian l to denote B2
t ´ ∆.
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5.1. Solution in 1D. We notice that

pB
2
t ´ B

2
xqϕpx ˘ tq “ 0

so we seek a solution of the form

u “ ϕpx ` tq ` ψpx ´ tq

Setting t “ 0, we must have

ϕpxq ` ψpxq “ g, ϕ1
pxq ´ ψ1

pxq “ h

It follows that

ϕ1
pxq “

1

2
pg1

pxq ` hpxqq, ψ1
pxq “

1

2
pg1

pxq ´ hpxqq

and thus

ϕpxq “
1

2
gpxq `

1

2

ˆ x

0

hpsq ds ` C1

ψpxq “
1

2
gpxq ´

1

2

ˆ x

0

hpsq ds ` C2

We have C1 ` C2 “ 0 since ϕ ` ψ “ g, so

(5.2) upxq “
1

2
rgpx ` tq ` gpx ´ tqs `

1

2

ˆ x`t

x´t

hpsq ds

gives a solution. This is called the D’Alembert’s formula.

5.2. Solution in Higher Dimensions. In higher dimensions, we look at the mean value
of u, g, h over the sphere Bpx, rq. Therefore, we define

Upx, r, tq :“
1

|BBpx, rq|

ˆ
upy, tq dSpyq

Gpx, rq :“
1

|BBpx, rq|

ˆ
gpyq dSpyq

Hpx, rq :“
1

|BBpx, rq|

ˆ
hpyq dSpyq

Then direct calculation gives an equation that U satisfies:

Lemma 5.3 (Euler-Poisson-Darboux Equation). Fix x P Rn, we have

(5.4) Utt ´ Urr ´
n ´ 1

r
Ur “ 0 in R` ˆ p0,8q

with initial data
U “ G, Ut “ H on R` ˆ tt “ 0u

We then establish an explicit solution formula for the n “ 3 case, called Kirchhoff’s
formula. Denoting Ũ :“ rU , G̃ :“ rG, and H̃ :“ rH, we have

Ũtt ´ Ũrr “ 0 in R` ˆ p0,8q

with intial data
Ũ “ G̃, Ũt “ H̃ on tr “ 0u ˆ p0,8q

and boundary data
Ũ “ 0 on tr “ 0u ˆ p0,8q
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The D’Alembert’s formula (5.2) gives us

Ũpx; r, tq “
1

2
rG̃pr ` tq ´ G̃pt ´ rqs `

1

2

ˆ r`t

´r`t

H̃pyq dy

Dividing the above equation by r and sending r Ñ 0 we get

upx, tq “ G̃1
ptq ` H̃ptq

Straightforward computation then yields

(5.5) upx, tq “
1

|BBpx, tq|

ˆ
BBpx,tq

thpyq ` gpyq ` ∇gpyq ¨ py ´ xq dSpyq

which is the Kirchhoff’s formula.
To establish the n “ 2 case, the strategy is regarding a function taking input in R2 as a

function taking input in R3. We omit the details here.

5.3. Energy Methods. We use energy methods to prove two results: uniqueness of the
Cauchy problem and finite speed of propagation.

Theorem 5.6 (Uniqueness). Let U be an open domain in Rn. Then the boundary value
problem

utt ´ ∆u “ 0

on U with initial data

up¨, 0q “ g, utp¨, 0q “ h

and boundary value

u “ f on BU

admits a unique classical solution.

Proof. By linearity, it suffices to show that a solution w to the wave equation with zero
boundary and initial data vanishes everywhere. Consider

Eptq :“
1

2

ˆ
U

w2
t ` |∇w|

2 dx

Then

d

dt
Eptq “

ˆ
U

wtwtt ` p∇wtq ¨ p∇wq dx

“

ˆ
U

wtpwtt ´ ∆wq dx

“ 0

where the second equality follows from integration by parts. By initial condition, Ep0q “ 0,
and thus Eptq “ 0 for all t. In particular, ∇w ” 0 on U , and we get w ” 0 on U by zero
boundary condition. □

Theorem 5.7 (Finite Speed of Propagation). Let u be a solution to the homogeneous wave
equation. Suppose u ” 0 on Bpx0, t0q. Then u ” 0 in the cone tpx, tq : |x ´ x0| ď t0 ´ tu.
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Proof. We define

Eptq :“
1

2

ˆ
Bpx0,t0´tq

u2t ` |∇u|
2 dx

and differentiating the energy in t gives

d

dt
Eptq “

ˆ
Bpx0,t0´tq

ututt ` p∇utq ¨ p∇uq dx ´
1

2

ˆ
BBpx0,t0´tq

u2t ` |∇u|
2 dS

“

ˆ
BBpx0,t0´tq

ut
Bu

Bν
´

1

2
u2t ´

1

2
|∇u|

2 dS

ď 0

where the second equality follows from integration by parts and the last equality follows
from weighted Cauchy-Schwarz inequality. Since u ” 0 on Bpx0, t0q, we have Ep0q “ 0, and
thus Eptq “ 0 for all t. In particular, uptq is a constant on Bpx0, x0 ´ tq, and we know this
constant must be 0 since u ” 0 on Bpx0, t0q. □

6. Sobolev Spaces and Inequalities

The theorems in this section are standard Sobolev embeddings, and proof can be found
on [4]. For a Fourier analytic approach, interested readers can also look at [1].

Theorem 6.1 (Gagliardo-Nirenberg). Let 1 ď p ă n. For u P C1
c pRnq, we have

}u}Lp˚ ď C}∇u}Lp

where n
p

´ n
p˚ “ 1.

Remark 6.2. The value of p˚ can be seen through scaling. We define

uλpxq “ upλxq

and test the inequality for uλ.

As a corollary, we present the following Poincaré inequality that is of independent interest.

Theorem 6.3. Assume U is a bounded open subset of Rn. Suppose u P W 1,p
0 pUq for some

1 ď p ď n. Then
}u}LqpUq ď C}∇u}LppUq

for each q P r1, p˚s, and the constant C depends only on p, q, n and U . In particular, for all
1 ď p ď 8,

}u}LppUq ď C}∇u}LppUq

Theorem 6.4 (Morrey’s Inequality). Let p ą n, and γ “ 1 ´ n
p
. Then we have

}u}C0,γpRnq ď C}u}W 1,ppRnq

The proof relies crucially on the inequality

1

|Bpx, rq|

ˆ
Bpx,rq

|upyq ´ upxq| dy ď C

ˆ
Bpx,rq

|∇upyq|

|y ´ x|n´1
dy

for each ball Bpx, rq Ă Rn.

Theorem 6.5 (Rellich-Kondrakov Compactness Theorem). Assume U is a bounded open
subset of Rd and BU is C1. Suppose 1 ď p ă n, then W 1,p compactly embedds into LqpUq for
1 ď q ă p˚.
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Given a bounded sequence tumum Ă W 1,ppUq, we want to show that it admits a convergent
subsequence in LqpUq. By Sobolev extension theorem, we may assume um are defined on Rn

and compactly supported in some bounded open V , so we actually show that tumum has a
convergent subsequence in LqpV q given that tumum Ă W 1,ppV q is uniformly bounded. Let
uεm be the standard mollification, we show that uεm Ñ um in LqpV q uniformly in m, and
that for each ε ą 0, there is a subsequence tuεmj

uj that converges uniformly. Combining

everything above, we can show that for every δ ą 0, we can find a subsequence tumj
uj such

that
lim sup
j,kÑ8

}umj
´ umk

}LqpV q ď δ

We can then let δ “ 1, 1
2
, 1
3
, ... and extract a convergent subsequence tuml

ul Ă LqpV q using a
standard diagonal argument.

7. Linear Elliptic Equations

In this section, we study equations of the form

Lu “ f

on a domain U , where

(7.1) Lupxq “ ´

n
ÿ

i,j“1

aijpxquxixj
pxq `

n
ÿ

i“1

bipxquxi
pxq ` cpxqupxq

We can alternatively write L in the divergence form

Lu “ ´divpA ¨ ∇uq ` B ¨ ∇u ` cu

so that we can define the bilinear form

Bru, vs :“

ˆ
U

∇vpxq ¨ pApxq ¨ ∇upxqq dx `

ˆ
U

vpxqpBpxq ¨ ∇upxqq dx `

ˆ
U

cpxqupxqvpxq dx

We say that u P H1
0 pUq is a weak solution if for every v P H1

0 pUq,

Bru, vs “

ˆ
U

fpxqvpxq dx

Theorem 7.2 (A Priori Estimates). Let L be an operator of divergence form, with coefficients
A,B,C P L8pUq. Then

(1) |Bru, vs| ď α}u}H1
0
}v}H1

0
for some α ą 0.

(2) |Bru, vs| ě β}u}2
H1

0
´ γ}u}2L2 for some β, γ ą 0.

Proof. The first estimate is a direct consequence of Cauchy-Schwarz. The second one exploits
ellipticity and Poincaré’s inequality. □

Theorem 7.3 (Lax-Milgram Theorem). Let H be a Hilbert space, and B : H ˆ H Ñ R is
a bilinear form such that there are constants α, β ą 0 such that

Bru, vs ď α}u}}v}

and
Bru, us ě β}u}

2

Then, for every linear functional f : H Ñ R, there is some u P H such that

fpvq “ Bru, vs
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for every v P H.

Remark 7.4. If B is symmetric, then B is in fact an inner product and the conclusion directly
follows from Riesz representation theorem. Lax-Milgram is significant primarily because it
doesn’t have any symmetry assumption on B.

Theorem 7.5 (First Existence Theorem). There is a number γ ě 0 such that for each µ ě γ
and each function f P L2pUq, there exists a unique weak solution u P H1

0 pUq to the boundary
value problem

"

Lu ` µu “ f in U
u “ 0 on BU

For the second existence theorem, we need the following properties of compact operators.
One of the characterizations of compact operators H Ñ H is that they are the limits of
finite-rank operators H Ñ H in LpH,Hq, the space of bounded linear operators on H,
under the operator topology. Therefore, we expect compact operators to preserve some nice
properties of finite-rank operators.

Theorem 7.6 (Fredholm Alternative). Let H be a Hilbert space, and K : H Ñ H is a
compact linear operator. Then

(1) NpI ´ Kq is finite dimensional.
(2) RpI ´ Kq is closed.
(3) RpI ´ Kq “ NpI ´ K˚qK.
(4) NpI ´ kq “ t0u if and only if RpI ´ Kq “ H.
(5) dimNpI ´ Kq “ dimNpI ´ K˚q.

Theorem 7.7 (Second Existence Theorem). We have the following dichotomy:

(1) either for each f P L2pUq, there exists a unique weak solution u such that the boundary
value problem

"

Lu “ f in U
u “ 0 on BU

has a unique solution,
(2) or there exists a non-trivial solution u ı 0 to the boundary value problem

"

Lu “ 0 in U
u “ 0 on BU

Moreover, if the second assertion holds, the space of weak solutions N Ă H1
0 pUq is finite

dimensional, and equals the dimension of solutions N˚ Ă H1
0 pUq to the dual problem

"

L˚u “ 0 in U
u “ 0 on BU

Eventually, the boundary value problem in (1) has a solution if and only if

xf, vyL2 “ 0

for all v P N˚.

Definition 7.8. Let X be a Banach space, and A : X Ñ Y be a bounded linear operator.

(1) The resolvent set of A is

ρpAq :“ tη P R : pA ´ ηIq is one to one and ontou
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(2) The spectrum of A is
σpAq “ R ´ ρpAq

(3) We say λ P σpAq is an eigenvalue of A if

NpA ´ λIq ‰ 0

and we write σppAq for the collection of eigenvalues of A, called the point spectrum
of A.

Theorem 7.9 (Spectral Properties of Compact Operators). Assume dimH “ 8 and K :
H Ñ H is compact. Then

(1) 0 P σpKq,
(2) σpKq ´ t0u “ σppKq ´ t0u.
(3) σppKq is either a finite set or a sequence of numbers going to 0.

Theorem 7.10 (Third Existence Theorem). There is an at most countable set Σ, such that
the initial value problem

"

Lu ` λu “ f in U
u “ 0 on BU

has a unique solution for all λ not in Σ. Moreover, if Σ is infinite, then Σ “ tλku8
1 , where

λk Ñ 8 as k Ñ 8.

7.1. Maximum Principles. In this section we collect weak and strong maximum principles
for elliptic equations. They can also be found on Chapter 6 of [4].

Theorem 7.11 (Weak Maximum Principle, c “ 0). Suppose u P C2pUq X CpUq and c “ 0.
Then

(1) If Lu ď 0 in U , then maxU u “ maxBU u.
(2) If Lu ě 0 in U , then minU u “ minBU u.

Theorem 7.12 (Weak Maximum Principle, c ě 0). Suppose u P C2pUq X CpUq and c ě 0.
Then

(1) If Lu ď 0 in U , then maxU u ď maxBU u
`.

(2) If Lu ě 0 in U , then minU u ď ´maxBU u
´.

Theorem 7.13 (Hopf Lemma). Assume u P C2pUq X CppUqq and c ” 0 in U . Suppose
further that

Lu ď 0 in U

and that there exists a point x0 P BU such that

upx0q ą upxq for all x P U

If U satisfies the interior ball condition at x0, that is, there exists a ball B Ă U such that
x0 P BB, then we must have

Bu

Bν
px0q ą 0

where ν is the outward normal of BU at x0. If c ě 0, the above conclusion holds provided
upx0q ě 0.

Theorem 7.14 (Strong Maximum Principle). Suppose c “ 0, U is bounded, open and
connected. Assume also that u P C2pUq X CpUq. If
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(1) Lu ď 0, and there is an interior point that achieves the maximum on U , or
(2) Lu ě 0, and there is an interior point that achieves the minimum on U ,

Then u is constant on U .

7.2. Heuristic Discussion of Regularity. If we look at the Poisson equation ∆u “ f on
U with u “ 0 on BU , then ˆ

U

|f |
2

“

ˆ
U

|∆u|
2

If we formally integrate by parts, the above equation actually equals toˆ
U

|D2u|
2

So the L2 norm of the second derivative of u can be estimated in terms of the L2 norm of
f . Therefore, if f has enough regularity, say H8pUq, then we can hope that a weak solution
u P H1

0 pUq to the above equation is actually in H8pUq. To carry out the above calculation
rigorously, we would need to use difference quotients.

8. Linear Parabolic Equations

We construct weak solutions by Galerkin method. Let twkuk be an orthonormal basis in
L2pUq and an orthogonal basis in H1

0 pUq. We look for um : r0, T s Ñ H1
0 pUq such that

umptq “

m
ÿ

k“1

dkmptqwk

where dkm is constructed such that

(8.1) dkmp0q “ xg, wky

and

(8.2) xu1
m, wky ` Brum, wk; ts “ xf, wky

Note that (8.2) is equivalent to

(8.3) pdkmq
1
ptq `

m
ÿ

1

Brwl, wk; tsd
l
mptq “ xf, wky

for k “ 1, ...,m. Note that this is a system of ODEs. Together with (8.1), existence and
uniqueness of dkm’s are guaranteed by the fundamental theorem of ODEs.

Theorem 8.4 (Energy Estimates). We have

max
0ďtďT

}umptq}L2pUq ` }um}L2pr0,T s;H1
0 pUqq ` }u1

m}L2pr0,T s;H´1pUqq ď Cp}g}L2pUq ` }f}L2pr0,T s;L2pUqqq

The intuition of this energy estimate can be seen through the inhomogeneous heat equation

Btu ´ ∆u “ f

with up0q “ g. We multiply both sides with u and integrate in time to have

d

dt
}u}

2
L2pUq ` }∇u}

2
L2pUq “

ˆ
U

fu
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Using weighted Cauchy-Schwarz inequality (1.2), we have

d

dt
}u}

2
L2pUq ` }∇u}

2
L2pUq ď C}f}

2
L2pUq

so Gronwall’s inequality gives

max
0ďtďT

}uptq}L2pUq ` }u}L2pr0,T s;H1
0 pUqq ď Cp}g}L2pUq ` }f}L2pr0,T s;L2pUqqq

Meanwhile, note that

}Btu}L2pr0,T s;H´1pUqq ď }∆u}L2pr0,T s;H´1pUqq ` }f}L2pr0,T s;H´1pUqq

ď }u}L2pr0,T s;H1
0 pUqq ` }f}L2pr0,T s;L2pUqqq

ď Cp}g}L2pUq ` }f}L2pr0,T s;L2pUqqq

so we get the desired energy estimate.
Now we show that we can construct a weak solution via the above Galerkin method using

a standard compactness argument.
Given g and f and define um as above, by above energy estimates we have that tumum

is bounded in L2pr0, T s;H1
0 pUqq and tu1

mum is bounded in L2pr0, T s;H´1pUqq. By Banach-
Alaoglu, we can extract a subsequence uml

such that uml
converges weakly to some u in

L2pr0, T s;H1
0 pUqq and u1

ml
converges weakly to some v in L2pr0, T s;H´1pUqq. It is a standard

check that v “ u1.
We next want to verify that u is the desired weak solution. As a first step, we want to

verify that

(8.5) xv, u1
y ` Brv, u; ts “ xv, fy

for v belonging to a dense subset of

H :“ tv : v P L2
pr0, T s;H1

0 pUqq, v1
P L2

pr0, T s;H´1
pUqqu

We may assume v takes form

vptq “

N
ÿ

k“1

dkptqwk

Now, note that for m ě N ,

xu1
m, vy ` Brv, um; ts “ xf, vy

So integrate in time from 0 to T we getˆ T

0

xu1
m, vy dt `

ˆ T

0

Brv, um; ts dt “

ˆ T

0

xf, vy dt

for every m P N. Passing to the subsequence tuml
ul and sending l Ñ 8, we getˆ T

0

xu1, vy dt `

ˆ T

0

Brv, u; ts dt “

ˆ T

0

xf, vy dt

by weak convergence of tuml
ul and tu1

ml
ul. Since v is arbitrary in a dense subset of H,

we actually have (8.5) as desired. Moreover, we have the lemma below that gives us more
regularity on u.

Lemma 8.6. If u P L2pr0, T s;H1
0 pUqq and u1 P L2pr0, T s;H´1pUqq, then actually u P

Cpr0, T s;L2pUqq.
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The next step is to verify that up0q “ g. Note that for every v P H with vpT q “ 0,

´

ˆ T

0

xu, v1
y dt `

ˆ T

0

Brv, u; ts dt “

ˆ T

0

xf, vy dt ` xup0q, vp0qy

On the other hand, for every uml
and v P H with vpT q “ 0, we haveˆ T

0

xuml
, v1

y dt `

ˆ T

0

Brv, uml
; ts dt “

ˆ T

0

xf, vy dt ` xuml
p0q, vp0qy

Sending l Ñ 8, we know that uml
p0q Ñ g in H1

0 pUq, soˆ T

0

xu, v1
y dt `

ˆ T

0

Brv, u; ts dt “

ˆ T

0

xf, vy dt ` xg, vp0qy

Since v P H is arbitrary, we have g “ up0q as desired.
Eventually we employ energy method to show uniqueness. Note that we only need to show

that u ” 0 when f and g are both identically 0. To this end, we observe that

1

2

d

dt
}u}

2
L2pUq “ xu1, uy “ ´Bru, u; ts

ď γ}u}
2
L2pUq

So by Gronwall and the fact that up0q “ 0 we get }uptq}L2pUq “ 0 for every t P r0, T s, and
thus u ” 0 as desired.

9. Linear Hyperbolic Equations

We consider the problem

ut `
ÿ

j

Bjuxj
“ f, up0q “ g

where Bj’s are symmetric and C1. We also assume g P H1 and f is H1 in both space and
time. We construct the solution by vanishing viscosity method. For this, we begin by
considering the mollified equation

(9.1) uεt `
ÿ

j

Bju
ε
xj

´ ε∆uε “ f, up0q “ ηε ˚ g “: gε

Theorem 9.2. For each ε ą 0, the mollified equation (9.1) has a unique solution uε P L2
tH

3
x

with puεq1 P L2
tH

1
x

Theorem 9.3 (Energy Estimates). Suppose uε solves (9.1). Then we have the estimate

(9.4) }uε}L8pr0,T s;H1q ` }puεq1
}L8pr0,T s;L2q ď Cp}f}L8pr0,T s;H1q ` }f 1

}L8pr0,T s;H1q ` }g}H1q

Proof. Standard energy estimates will gives us

d

dt
}uε}2L2 ď Cp}uε}2L2 ` }f}

2
L2q

So by Gronwall’s inequality,

}uε}2L2 ď C 1
p}g}L2 ` }f}L2pr0,T s;L2qq

Now, if we denote v :“ uεxk
, we have

vt `
ÿ

j

Bjvxj
´ ε∆v “ f ´

ÿ

j

pBjqxk
uxj
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so that we can argue again using the standard energy estimates to get

d

dt
}v}

2
L2 ď Cp}∇uε}2L2 ` }∇f}

2
L2q

and thus
d

dt
}∇uε}2L2 ď Cp}∇uε}2L2 ` }∇f}

2
L2q

Using Gronwall as usual, we get

}∇uε}L8pr0,T s;L2q ď Cp}∇g}
2
L2 ` }∇f}

2
L2pr0,T s;L2qq

Eventually, setting w :“ ut, we have

wt `
ÿ

j

Bjwxj
“ ft ´

ÿ

j

pBjqtuxj

with initial data
wp0q “ fp0q ´

ÿ

j

Bjg
ε
xj

` ε∆gε

Arguing as before, we obtain

}w}
2
L8pr0,T s;L2q ď Cp}fp0q}

2
L2 ` }∇g}

2
L2 ` ε2}∇gε}2L2 ` }ft}L2pr0,T s;L2qq

Note that
}fp0q}

2
L2 À }f}L2pr0,T s;L2q ` }f 1

}L2pr0,T s;L2q

and that
ε2}∇gε}2L2 À }∇g}

2
L2

so combining everything together we get the desired result. □

From the energy estimates, we can prove existence of weak solutions using a compactness
argument just as before.

10. Energy Estimates for Water Wave Equations

Here we give an alternative approach to the energy estimates in [8]. Our energy function
is

Eptq “ Eaptq ` Ecptq `

›

›

›

›

B
1
α

1

Z,α1

›

›

›

›

2

L2

` }B
1
αZt}

2
L2 ` }D2

α1Zt}
2
L2 `

ˇ

ˇ

ˇ

ˇ

1

Z,α1

p0, tq

ˇ

ˇ

ˇ

ˇ

where

Eaptq “

ˆ
|Z,α1DtDα1Zt|

2

A1

dα1
` }Dα1Zt} 9H1{2

Ecptq “

ˆ
|Z,α1D3

tDα1Zt|
2

A1

dα1
` }D2

tDα1Zt} 9H1{2

To close the energy estimates, we mostly imitate [8], and a slightly non-trivial modification
is control of }D2

t pat
a

˝ h´1q}L8 . We have the expression

(10.1)
at
a

˝ h´1
“

´Imp2rZt,HsZtt,α1 ` 2rZtt,HsZt,α1 ´ rZt, Zt;Dα1Zts

A1

The key is to control the term

}rZt, Zt;Dα1Zts}L8
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Note that

|rZt, Zt;Dα1Ztttspα
1
q| “

ˇ

ˇ

ˇ

ˇ

ˆ
pZtpα

1q ´ Ztpβ
1qq2

pα1 ´ β1q2

1

Z,α1

pβ1
qBα1Ztttpβ

1
q dβ1

ˇ

ˇ

ˇ

ˇ

ď

ˆ ˇ

ˇ

ˇ

ˇ

pZtpα
1q ´ Ztpβ

1qq2

pα1 ´ β1q2

1

Zα1

pβ1
qBα1Ztttpβ

1
q

ˇ

ˇ

ˇ

ˇ

dβ1

ď

ˆ ˆ ˇ

ˇ

ˇ

ˇ

Ztpα
1q ´ Ztpβ

1q

α1 ´ β1

ˇ

ˇ

ˇ

ˇ

2

dβ1

˙1{2

ˆ

ˆˆ ˇ

ˇ

ˇ

ˇ

Ztpα
1q ´ Ztpβ

1q

α1 ´ β1

1

Zα1

pβ1
qBα1Ztttpβ

1
q

ˇ

ˇ

ˇ

ˇ

2

dβ1

˙1{2

(10.2)

The first term in the last row is bounded by }Zt,α1}L2 by Hardy’s inequality. To control the
second term, we want to show

Ztpα
1q ´ Ztpβ

1q

α1 ´ β1

1

Zα1

pβ1
q

is uniformly bounded for all α1, β1 P R. Without loss of generality, we may assume β1 ă α1,
since the other situation is similar. We observe that

Ztpα
1q ´ Ztpβ

1q

α1 ´ β1

1

Z,α1

pβ1
q “

1

α1 ´ β1

ˆ α1

β1

1

Z,α1

pβ1
q Zt,α1pxq dx

“
1

α1 ´ β1

ˆ α1

β1

ˆˆ β1

x

Bα1

1

Z,α1

pyq `
1

Z,α1

pxq

˙

Zt,α1pxq dydx

“
1

α1 ´ β1

ˆ α1

β1

Dα1Ztpxq dx `
1

α1 ´ β1

ˆ α1

β1

ˆ β1

x

Bα1

1

Z,α1

pyqZt,α1pxq dydx

Therefore,
ˇ

ˇ

ˇ

ˇ

Ztpα
1q ´ Ztpβ

1q

α1 ´ β1

1

Z,α1

pβ1
q

ˇ

ˇ

ˇ

ˇ

ď }Dα1Zt}L8 `
1

α1 ´ β1

ˆ α1

β1

ˆ α1

β1

ˇ

ˇ

ˇ

ˇ

Bα1

1

Z,α1

pyqZt,α1pxq

ˇ

ˇ

ˇ

ˇ

dydx

ď }Dα1Zt}L8 `
1

α1 ´ β1
pα1

´ β1
q
1{2

›

›

›

›

Bα1

1

Z,α1

›

›

›

›

L2

pα1
´ β1

q
1{2

}Zt,α1}L2

ď }Dα1Zt}L8 `

›

›

›

›

Bα1

1

Z,α1

›

›

›

›

L2

}Zt,α1}L2
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